
Scalable RFID Pseudonym Protocol

Boyeon Song
Information Security Group

Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

Email: b.song@rhul.ac.uk

Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

Email: c.mitchell@rhul.ac.uk

Abstract—In this paper we address the issue of scalability in
RFID pseudonym protocols. Many previously proposed proto-
cols suffer from scalability issues because they require a linear
search to identify or authenticate a tag. Some RFID protocols,
however, only require constant time for tag identification, but,
unfortunately, all previously proposed schemes of this type have
serious shortcomings. We propose a novel RFID authentication
protocol based on the Song-Mitchell protocol [17], that takes
O(1) work to authenticate a tag, and meets the privacy, security
and performance requirements identified here. The proposed
scheme also supports tag delegation and ownership transfer in
an efficient way.

Keywords-RFID; pseudonym; authentication; scalability

I. INTRODUCTION

Radio Frequency Identification (RFID) tags have been
widely studied by both academia and industry [1], [10], [21].
Such tags can be attached to objects, including products,
animals or people, and can subsequently be used to identify
them using radio communications.

An RFID system consists of tags, readers and a back-
end server. A tag is typically made up of an antenna for
receiving and transmitting a radio-frequency (RF) signal,
and an integrated circuit for modulating and demodulating
the signal and storing and processing information. When a
back-end server wants to identify one or more tags, a reader
emits an RF signal via its antenna. Any tag within range
of the signal responds with certain stored data, such as a
tag identifier. The reader then passes the received tag data
to the back-end server for further processing, including tag
identification and information retrieval.

Key features of RFID systems include a lack of physical
contact between readers and tags, and tag scanning out of
the line of sight [1], [10]. Moreover, a smart tag possesses
storage and processing capabilities, and can also perform
lightweight cryptographic functions. These properties mean
that RFID tags have many possible applications, such as
product management, transport payments, livestock tracking,
library book administration, patient medical care and e-
passports. However, the technology also poses threats to
user privacy, including the possibilities of user information
leakage and location tracking.

One approach to protecting against such privacy and
security threats is to use a tag authentication scheme in
which a tag is both identified and verified in a manner that
does not reveal the tag identity to an eavesdropper. A large
number of tag authentication protocols of this type have
been proposed. Typically, pseudonyms are used to provide
anonymity to tags; whenever a tag is queried, it responds
with a different cryptographically derived pseudonym. In
some of these pseudonym-based protocols, see for example
[6], [8], [13], [17], a back-end server must perform a linear
search of its database to identify a tag. That is, for each tag
entry in the database in turn, it computes the pseudonym
that would be produced by that tag (using stored secrets)
and compares it with the received pseudonym. Such a linear
search runs in O(n) time, where n is the number of elements
in the back-end database. Such a costly search function
will potentially cause scalability issues as the tag population
increases.

Scalability is a desirable property in almost any system,
enabling it to handle growing amounts of work in a graceful
manner [3]. A scalable RFID system should be able to
handle large numbers of tags without undue strain, and a
scalable RFID protocol should therefore avoid any require-
ment for work proportional to the number of tags.

Some RFID pseudonym schemes, see for example [7], [9],
[11], [19], require only O(1) work to identify a tag. Most
such schemes use look-up tables to match a value with a
pseudonym received from a tag, thereby taking a constant
time without the need for a linear search. However, all
previously proposed schemes of this type possess significant
security, privacy or performance shortcomings, as discussed
in section III.

An alternative means of improving the scalability of an
RFID system is delegation. Tag delegation involves giving
authorised entities the right to query and identify certain tags
during a specified period. This clearly has the potential to
reduce the back-end server’s workload.

The goal of this paper is to propose a scalable and
efficient RFID pseudonym protocol having desirable privacy
and security properties. To provide scalability, our novel
protocol possesses two features, namely that a server takes
only constant time to identify a tag, and tag delegation is

straightforward. The protocol originates from the scheme
introduced in [17] (referred to here as the SM protocol).

We first identify desirable privacy, security and perfor-
mance requirements for RFID protocols. We next introduce
some previously proposed protocols, and outline vulnera-
bilities in these schemes. We then present a novel protocol
and analyse it against the identified requirements. Finally we
summarise the contributions of the paper.

II. REQUIREMENTS FOR RFID PROTOCOLS

The RFID protocols considered here operate under the
following assumptions.
• The communicating parties are a server and a tag.
• The term server is used to mean a combination of a

back-end server and its readers.
• A server and tag communicate via an insecure RF

interface.
• A server maintains a secure database of information

for the tags that it owns, and has a significantly greater
processing capability than a tag.

• A tag has a rewritable memory that may not be tamper-
resistant, and can perform lightweight cryptographic
operations.

A. Privacy and Security

A major concern for RFID systems is user privacy. Un-
protected tag-server communications sent via wireless can
disclose information about a tag and its location. Two major
privacy issues are as follows [1], [10], [13], [22].
• Tag Information Privacy: In a typical RFID system,

when a server queries a tag, the tag responds with
its identifier. If unauthorised entities can also obtain
a tag identifier, then they may be able to request and
obtain the private information related to the tag held
in the server database. To protect against such tag in-
formation leakage, RFID systems should be controlled
so that only authorised entities are able to access the
information associated with a tag.

• Tag Location Privacy: If the responses of a tag are
linkable to each other or distinguishable from those of
other tags, then the location of a tag could be tracked
by multiple collaborating unauthorised entities. If mes-
sages from tags are anonymous, then the tag tracking
problem by unauthorised entities can be avoided.

We divide possible attackers into two groups, as follows.
• A weak attacker (WA) is a malicious entity that can

observe and manipulate communications between a
server and a target tag, but cannot compromise the tag.

• A strong attacker (SA) is a malicious entity that has
compromised a target tag, in addition to having the
capabilities of a weak attacker.

Tag memory is vulnerable to compromise by side channel
attacks, because it is unlikely to be tamper-proof. Hence,

threats by an SA as well as a WA should be considered in
RFID protocol design. Security threats to RFID protocols
can be classified into weak and strong attacks, in line with
the attacker types defined above.

The following attacks are feasible for a WA [1], [10], [22].
• Tag Impersonation: a WA could impersonate a tag to

a server without knowing the tag’s internal secrets.
• Replay Attack: a WA could replay messages sent

between server and tag without being detected.
• Man-in-the-Middle (MitM) Attack: a WA could in-

terfere with messages sent between a server and a tag
(e.g. by insertion, modification or deletion).

• Denial-of-Service (DoS) Attack: a WA could block
messages transmitted between a server and a tag. Such
an attack could cause the server and the tag to lose
synchronisation. For example, the server might update
its shared secrets, while the tag does not; as a result,
they would no longer be able to authenticate each other.

An SA may be able to perform the following attacks, as well
as the above weak attacks [1], [11], [13], [16], [17].
• Backward Traceability: an SA might be able to trace

past transactions between a server and a compromised
tag using knowledge of the tag internal state.

• Forward Traceability: an SA might be able to trace
future transactions between a server and a compromised
tag using knowledge of the tag internal state. The only
way of maintaining future security once the current tag
secrets have been revealed is to detect key compromise
as soon as possible, and to replace the compromised
secrets as soon as possible [11].

• Server Impersonation: an SA might be able to im-
personate a legitimate server to a compromised tag
using knowledge of the tag internal state. It could, for
example, ask the tag to update its internal state so that
the server can no longer communicate successfully with
the tag, although the SA can [16].

B. Performance
RFID schemes should address the following performance

issues [1], [13], [17].
• Storage Capacity: the volume of data stored in a

tag should be minimised, because of tight tag cost
requirements.

• Computation: the complexity of tag computations
should be minimised because of the very limited power
available to a tag.

• Communication: the number and size of messages
exchanged between a tag and a server should be min-
imised.

• Scalability: the server should be able to handle a large
tag population. It should be able to identify multiple
tags using the same radio channel. Performing an
exhaustive search to identify individual tags is difficult
when the number of tags is large.

III. RELATED WORK

We next introduce some RFID protocols that use a look-
up table to identify a tag, thereby taking only O(1) time.
We also outline shortcomings in these schemes.

Henrici and Müller [9] proposed a protocol for RFID tag
identification (the HM scheme), in which the server only
needs to perform O(1) work to identify a tag. However,
as described in [2], [6], the scheme allows a degree of
tag tracking. In addition, if a tag is compromised, its
previous identifiers can easily be computed, thereby allowing
backward traceability [17].

Dimitriou [7] proposed an RFID authentication protocol
(the D scheme), requiring O(1) work for a server to au-
thenticate a tag. However, a tag identifier might remain the
same between valid sessions because, if an authentication
session is unsuccessful, a tag does not update its identifier.
Tag tracking is thus partially possible [7], as in the HM
scheme.

The RFID authentication protocol of Lim and Kwon [11]
(the LK scheme) requires a server to maintain a precomputed
table of tag information, used to authenticate tags. The
scheme provides a range of security properties, covering
backward and forward traceability and weak attacks. How-
ever, it does not provides location privacy, as described
in [14]. Moreover, the scheme may involve significant on-
line computations for tag authentication in a successful
session [11], although it only requires O(1) work for tag
identification.

Tsudik [18] presented an RFID identification protocol
(the T1 scheme) that provides only a basic level of tag
identification using time-stamps, and proposed two further
schemes (the T2 and T3 schemes) also providing tag authen-
tication. The schemes use monotonically increasing time-
stamps for tracking-resistant tag authentication. A server
maintains a periodically updated hash table in which each
row corresponds to a tag.

The T1 scheme only needs O(1) operations to identify a
tag, because a hash table is used for all look-ups. However,
the scheme merely identifies a tag, and does not provide
tag authentication. Additionally, the scheme is susceptible
to a trivial DoS attack in which an attacker can easily
incapacitate a tag by feeding it an inaccurate future time-
stamp value [19]. Moreover, the scheme makes the important
assumption that a given tag is never identified (interrogated)
more than once within any time interval [19].

The T2 scheme adds tag authentication to T1 using
a challenge-response method. This scheme also takes a
constant time to identify and authenticate a tag because of its
use of a look-up table. However, if a tag has been previously
desynchronised by an attacker, the server must perform O(n)
operations to authenticate the tag. The T2 scheme is also
susceptible to DoS attacks, like the T1 scheme [19].

The T3 scheme mitigates the DoS vulnerability of T1
and T2 by using a hash-chain to generate a so-called epoch

token, allowing a tag to ascertain that a time-stamp is not too
far into the future. The server only needs to perform O(1)
operations to identify and authenticate a tag, if the tag reply
is valid. If not, the server takes O(n) time. Unfortunately,
DoS attacks still remain a threat [19].

In addition, in T2 and T3, an adversary can potentially
distinguish between synchronised and desynchronised tags
by timing server responses, because a synchronised tag only
requires a server to perform a fast table look-up, whereas
a desynchronised tag requires it to perform an exhaustive
search. Moreover, none of these schemes can resist backward
traceability because they use a fixed key.

Burmester, de Medeiros and Motta [4] introduced
an anonymous RFID authentication protocol (the BMM
scheme) that supports constant key-lookup, using a pseudo-
random function. However, the scheme weakens location
privacy; if an authentication session fails, a tag re-uses the
same pseudonym in the following session. Also, it does not
provide backward traceability because of the use of a fixed
secret key [4].

IV. A NOVEL RFID PSEUDONYM PROTOCOL

We introduce here a new RFID pseudonym protocol. This
protocol provides scalability as well as satisfying the privacy,
security and performance properties given in section II.

A. Main Features

The protocol has the following main features:
• To improve scalability the protocol makes use of a

precomputed look-up table for tag authentication, as
in the schemes described in section III. As a result, the
server takes O(1) work to identify and authenticate a
tag, without needing a linear search.

• The look-up table contains a number of entries for
each tag, one for each element of a tag-specific hash-
chain. Elements from this hash-chain are used as tag
identifiers (and as database keys to identify tags). A
keyed hash function is used to generate each hash-
chain, using a secret key shared by the tag and server.
The hash-chain length, m, determines the number of
tag identifiers that can be produced using any one key.

• The operation of the protocol (described in detail in
section IV-D) can be divided into three cases, as follows
(see also Table I):

1) Case 1: for each of the first m − 1 queries
of a tag, the protocol process only involves tag
authentication and requires just two messages. To
authenticate a tag, the server searches a look-up
table, taking constant time.

2) Case 2: on the mth query of a tag, the protocol
updates the secrets shared by the server and tag, as
well as providing tag authentication. This process
requires an additional message. The server takes
O(1) work to authenticate a tag, as in case 1.

Table I
OPERATION OF THE PROTOCOL

Query number 1, · · · , (m− 1) m (m + 1), · · ·
Operation Case 1 Case 2 Case 3

State Regular state Irregular state

3) Case 3: if a tag is queried more than m times,
which should not normally happen, then a revised
version of the SM protocol is performed; this
requires the server to perform a linear search with
complexity O(n).

• For server authentication (in cases 2 and 3), for each
tag the server holds a secret s that only it knows, as in
the schemes presented in [11], [17].

• In normal operation (cases 1 and 2), a tag does not
need to generate pseudo-random numbers; however, in
case 3, a pseudo-random number is needed to prevent
tag tracking.

B. The SM protocol

We outline the SM protocol [17], on which the new pro-
tocol is based. The XOR, concatenation, substitution, right
circular shift and left circular shift operators are represented
below by ⊕, ‖, ←, � and �, respectively.

Initially, a server S assigns a string s of l bits to each tag
T and computes t = h(s), where h : {0, 1}∗ → {0, 1}l is a
hash function. Each tag T stores t, and S stores (s, t, ŝ, t̂)
for every tag it manages, where ŝ and t̂ are the most recent
‘old’ values of s and t.

The authentication protocol operates as follows (see also
Figure 1).

1) S generates a random string r1 of l bits and sends it
to T .

2) T generates a random string r2 of l bits as a temporary
secret, and computes M1 = t⊕ r2 and M2 = ft(r1 ⊕
r2). T then sends M1 and M2 to S.

3) S searches its database for a value t for which M2 =
ft(r1 ⊕M1 ⊕ t), where r1 is the value sent by S in
step 1. If no match is found, the session terminates. If
a match is found, S has authenticated T . S computes
r2 = M1 ⊕ t and M3 = s ⊕ (r2 � l/2), and sends
M3 to T . S then updates the entries for the tag T
from (ŝ, t̂, s, t) to (s, t, (s� l/4)⊕ (t� l/4)⊕ r1 ⊕
r2, h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2)).

4) T computes s = M3 ⊕ (r2 � l/2) and checks that
h(s) = t. If the check succeeds, T has authenticated
S, and sets t← h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2).
If the check fails, the session terminates.

In [5], [20], attacks are described on this protocol, which
arise because the XOR operation is used to construct each of
messages M1, M2 and M3. Cai et al. [5] present a revised
scheme in which the construction of M2 uses concatenation

instead of XOR, and M3 uses a hash function h(r2) instead
of (r2 � l/2). We present here a further revision of the SM
protocol, and use it in case 3 of the novel protocol. In our
revised scheme, M2 is the same as in the scheme introduced
by Cai et al. [5], and other changes are described below.

C. Initialisation
The server S chooses values for l and lr and functions e,

f , g and h as follows.
• l is the bit-length of a tag identifier and a shared key. It

should be large enough to ensure that an l-bit key is a
strong cryptographic key for the keyed hash functions,
and in particular that an exhaustive search to find an
l-bit tag identifier is computationally infeasible.

• lr (≤ l) is the bit-length of a random string. It should
be large enough to ensure that an exhaustive search to
find an lr-bit value is computationally infeasible.

• e : {0, 1}∗×{0, 1}l → {0, 1}l, f : {0, 1}∗×{0, 1}l →
{0, 1}l and g : {0, 1}∗ × {0, 1}l → {0, 1}3l are keyed
hash functions.

• h is a hash function, h : {0, 1}∗ → {0, 1}l.
• e, f , g and h should be one-way, collision-resistant,

and suitable for implementation in a low-cost tag. (A
variety of work on such hash functions is ongoing; see,
for example [15].)

The server S builds a look-up table which is used for
tag identification. The table definition process involves the
following steps for each tag T managed by S.
• S chooses a random l-bit string s, and computes

the l-bit key k = h(s), where s is used for server
authentication and k is used as input to the keyed hash
functions e, f and g.

• S chooses a random l-bit string x0, and computes the
hash-chain values xi = ek(xi−1) for 1 ≤ i ≤ m, where
the values xi are used as tag identifiers and m is the
length of the hash-chain.

• S stores s, k and the identifiers x0, x1, · · · , xm as the
entries for T in its look-up table.

Each tag T stores k, x and xm, where x is initially set to
x0 and functions as T ’s identifier.

D. Authentication and Secret Update
The novel protocol has three different stages in line with

the cases described in section IV-A: tag authentication,
secret update (I) and secret update (II). The stages are as
follows (see also Figure 2).

Case 1: Tag Authentication
S generates a random lr-bit string r, and sends r to T .

1) When T receives r, it compares its stored values of
x and xm. If x 6= xm, then the following steps are
performed.

a) T computes MT = fk(r‖x) and updates its
identifier x to ek(x). T sends r, x and MT back

S T
[T : s, t, ŝ, t̂] [t]

Generate r1

r1
−−− →

Generate r2

M1 = t⊕ r2,
M2 = ft(r1 ⊕ r2)

Search for t for which M2 = ft(r1 ⊕M1 ⊕ t)
M1,M2
← −−−

r2 = M1 ⊕ t, M3 = s⊕ (r2 � l/2)

Update secrets for T
M3

−−− →
ŝ← s, t̂← t s = M3 ⊕ (r2 � l/2)
s← (s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2 If h(s) = t,
t← h(s) t← h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2)

Figure 1. The SM Protocol

to S. If the updated x is equal to xm, T waits
for a server response, keeping r and MT in short
term memory.

b) When S receives x and MT , it performs the
following steps.
i) S searches its look-up table for a value xi

equal to the received value of x. If such a
value is found, S identifies T . Otherwise, the
session terminates.

ii) S checks that fk(r‖xi−1) equals the received
value of MT , where k is the key belonging
to the identified tag T . If this verification
succeeds, then S authenticates T . Otherwise,
the session terminates.

iii) If x 6= xm, then the authentication session
terminates successfully.

Case 2: Secret Update (I)
iv) If x = xm, then S performs the following

steps to update the secrets for T .
A) S chooses a random l-bit string s′ and

an integer m′, and computes a key k′ =
h(s′) and a sequence of m′ identifiers
x′i = ek′(x′i−1) for 1 ≤ i ≤ m′, where
x′0 is set to x. (These values can be
precomputed.)

B) S computes MS = gk(r‖x‖MT) ⊕
(s‖k′‖x′m′), and sends r and MS to T .

C) S updates the set of stored values for T
from (ŝ, k̂, s, k, x0, x1, x2, · · · , xm) to
(s, k, s′, k′, x, x′1, x

′
2, · · · , x′m′), where ŝ

and k̂ are the most recent previous values
of s and k, respectively.

c) When T receives r and MS , it computes
(s‖k′‖x′m′) = MS ⊕ gk(r‖x‖MT). If h(s) is
equal to k, T authenticates S and updates k
and xm to k′ and x′m′ , respectively. (The se-
cret update session then terminates successfully.)

Otherwise, the session terminates.
Case 3: Secret Update (II)

2) When T receives r, if T ’s stored values of x and
xm are equal, then the following steps are performed.
(This irregular case arises if T did not update its shared
secrets correctly in the previous session, that is, if the
secret update (I) step fails.)

a) T generates a random number rT as a session
secret, and computes M1 = fk(r‖rT) and M2 =
rT ⊕ x. T sends r, M1 and M2 back to S with
a request for an update of the shared secrets. T
waits for a server response, keeping r, rT and
M1 in short term memory.

b) When S receives M1 and M2, the following steps
are performed.
i) S searches its look-up table for a value x =
xm or x = x0 for which M1 = fk(r‖(M2 ⊕
x)). If such a value is found, S authenticates
T . Otherwise, the session terminates.

ii) If x = xm, S performs the following steps.
(This case arises when, although T sent x =
xm to S in the previous session, S did not
receive it correctly. Thus, neither S nor T
have updated their shared secrets.)
A) S chooses a random l-bit string s′ and

an integer m′, and computes a key k′ =
h(s′) and a sequence of m′ identifiers
x′i = ek′(x′i−1) for 1 ≤ i ≤ m′, where
x′0 is set to x. (These values can be
precomputed.)

B) S computes rT = M2 ⊕ x and MS =
gk(r‖rT ‖M1)⊕ (s‖k′‖x′m′), and sends r
and MS to T .

C) S updates the set of stored values for T
from (ŝ, k̂, s, k, x0, x1, x2, · · · , xm) to
(s, k, s′, k′, x, x′1, x

′
2, · · · , x′m′).

iii) If x = x0, S computes rT = M2 ⊕ x and
MS = gk̂(r‖rT ‖M1)⊕ (ŝ‖k‖xm) and sends

r and MS to T . (This case arises if MS did
not reach T correctly in the previous session,
and thus T did not update its secrets, although
S did. That is, this step resynchronises S and
T .)

c) When T receives r and MS , it computes
(s‖k′‖x′m′) = MS ⊕ gk(r‖rT ‖M1). If h(s) is
equal to k, T authenticates S and updates k
and xm to k′ and x′m′ , respectively. (The se-
cret update session then terminates successfully.)
Otherwise, the session terminates.

V. TAG DELEGATION AND OWNERSHIP TRANSFER

Tag delegation enables a server to delegate the right to
identify and authenticate a tag to a specified entity for a
limited time period [11], [12]. Such a procedure could be
used to reduce the computational load on a server.

In the protocol described in section IV, tag delegation is
straightforward. When S wants to delegate T to an entity, it
transfers the secret k and the identifiers x0, x1, · · · , xm for
T to the entity via a secure channel. As a result, the entity
can authenticate T a maximum of m times. However, the
entity receiving the delegation right cannot update the tag
secrets, as it does not know s.

Multiple delegations of a tag T are also possible. If S
transfers the secret k and the identifiers x0, x1, · · · , xm for
T to multiple entities, then these entities can all authenticate
T during the same limited period, that is, until x = xm is
reached.

If the delegated tag T is queried m times, then S will
need to update T ’s secret and identifiers and, if necessary,
S can now delegate the right to query the tag again. Note
that it is always necessary for S to update the tag secret and
identifiers, since, as noted above, only S knows s.

Unlike delegation, tag ownership transfer means that the
tag owner transfers all rights over the tag to a new owner
[11], [12]. In order to achieve ownership transfer of T ,
S must transfer the secrets s and k and the identifiers
x0, x1, · · · , xm for T , along with any other necessary infor-
mation, to the new owner via a secure channel. This transfer
should only take place after the old owner has updated the
secrets and identifiers for T , in order to protect its privacy
against possible tracking by the new owner. The server of the
new owner should also update the tag secrets after receiving
them from the old owner, in order to protect its privacy
against possible tracking by the old owner. This update needs
to take place in an environment where there is no possibility
of eavesdropping by the old owner. Once this is complete,
only the server of the new owner will be able to authenticate
T and update the secrets for T .

VI. ANALYSIS

A. Privacy and Security

The protocol proposed in section IV involves performing
a tag authentication (TA) process to authenticate a tag. When
a tag is queried for the mth time, the server and tag update
their shared secrets using the secret update (I) (SU1) process.
If SU1 does not complete successfully, in the following
session the secret update (II) (SU2) process is performed.
SU1 and SU2 make use of a key transfer protocol and involve
mutual authentication.

Note that both TA (case 1) and SU1 (case 2) are ‘normal’
cases of the protocol, but SU2 (case 3) will only occur if
the protocol fails to operate as it should. This case arises if
a message transfer in SU1 fails.

The security of the protocol relies on the tag secrets k and
s and the hash functions e, f , g and h. Under the assumption
that the l-bit key k is a strong cryptographic key for e, f
and g, an exhaustive search to find the l-bit values s and x is
computationally infeasible. Also, given that hash functions
e, f , g and h are one-way and collision-resistant, as stated
in section IV, the protocol has the following privacy and
security properties.
• Tag Information Privacy (P1): we assume in section II

that the server database is secure. Thus only the server
that has the secrets related to a tag can identify the tag
and access the tag information.

• Tag Location Privacy (P2): a tag reply (x,MT) is
anonymous to an eavesdropper that does not know k,
because x is updated to ek(x) in every query and MT

depends on x. A tag reply (M1,M2) in SU2 is also
anonymous to an eavesdropper, because M1 and M2

are computed using the key k and a session secret rT .
As a result, an adversary cannot track the location of a
tag simply by eavesdropping on tag messages.

The protocol resists the following attacks feasible for a
WA.
• Tag Impersonation (W1): to impersonate a tag, a WA

needs to compute x and MT (or M1 and M2). However,
a WA cannot compute them without knowing k.

• Replay Attack (W2): a WA cannot reuse messages
used in previous sessions because each response is a
cryptographic function of a fresh random number. More
specifically, MT and MS in TA and SU1 depend on r,
and M1, M2 and MS in SU2 depend on r and rT .

• MitM Attack (W3): a WA cannot interfere with the ex-
changed messages by inserting or modifying messages,
because of the use of the secrets k and s and random
numbers r and rT .

• DoS Attack (W4): if the second or third message in
SU1 is blocked, SU2 will be performed in the following
session. If the third message MS in SU2 is blocked, the
server and tag will become desynchronised, because the
server will update the shared secrets but the tag will

S T

[T : ŝ, k̂, s, k, (x0, · · · , xi, · · · , xm)] [k, x, xm]

Generate r
r

−−− →
If x 6= xm,
MT = fk(r‖x)
x← ek(x)

Case 1:
r,x,MT

← −−−
Search for xi = x in the DB
Check MT = fk(r‖xi−1)
. .
Case 2:
If x = xm, MS = gk(r‖x‖MT)⊕ (s‖k′‖x′m′)

r,MS

−−− →
Update secrets for T (s‖k′‖x′m′) = MS ⊕ gk(r‖x‖MT)

ŝ← s, k̂ ← k, s← s′, k ← k′, x0 ← x If h(s) = k,
xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′) k ← k′, xm ← x′m′

If x = xm,
Generate rT

M1 = fk(r‖rT)
M2 = rT ⊕ x

Case 3:
r,M1,M2
← −−−

Search for x = xm(or x0)
for which M1 = fk(r‖(M2 ⊕ x))
rT = M2 ⊕ x
If x = xm, MS = gk(r‖rT ‖M1)⊕ (s‖k′‖x′m′)
If x = x0, MS = gk̂(r‖rT ‖M1)⊕ (ŝ‖k‖xm)

r,MS

−−− →
Update secrets for T (s‖k′‖x′m′) = MS ⊕ gk(r‖rT ‖M1)
s← s′, k ← k′, x0 ← x If h(s) = k,
xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′) k ← k′, xm ← x′m′

Figure 2. RFID authentication and secret update

not. However, in the next session, the server will detect
such an event, because the tag will send as identifier
the value x0 in the server’s look-up table. The server
can thus recover synchronisation with the tag.

We next consider the degree to which the protocol can
resist the security threats posed by an SA, identified in
section II.

• Backward Traceability (S1): one significant feature of
the protocol is that, when x = xi in TA, MT is com-
puted as a function of xi−1. As a result, it is difficult for
an SA to trace transactions in previous sessions except
for the immediately previous session in which xi is
included in the tag reply. An SA could intercept a tag
identifier from a previous transaction, and compute the
compromised identifier x by iteratively applying keyed
hash function e to the previous identifier. However, the
previous transactions were anonymous to the attacker
at that time. Thus, in practice, tracing past transactions
will not be simple. Obviously, if tag past transactions
were computed using keys different from the compro-
mised key k, it will be infeasible for an SA to trace

them, because the previous keys will have no relation
to the key k.

• Forward Traceability (S2): an SA can trace future
transactions in which the compromised key is used.
However, once the server and the compromised tag
update their shared secrets, and assuming that the SA
does not intercept the value of MS sent from the server,
it will not be able to compute the updated secrets and
thus will no longer be able to trace tag transactions.
Therefore, a server should immediately replace the
tag secrets if it suspects that a tag may have been
compromised.

• Server Impersonation (S3): an SA could try to update
the secrets of a target tag by impersonating a legitimate
server. If such an attack was possible, then the legit-
imate server would no longer be able to identify the
tag, whereas the attacker would. One advantage of the
protocol is that such a server impersonation attack is not
straightforward. The reason for this is that an SA cannot
compute MS just by compromising a tag, because s is
known only by the server. An SA must perform a more

Table II
PRIVACY AND SECURITY PROPERTIES

P1 P2 W1 W2 W3 W4 S1 S2 S3
HM

√
· · · ·

√
· · ·

D
√

·
√ √ √

·
√

· ·
LK

√
·

√ √ √ √ √
∗ ∗

T1
√ √ √ √ √

· · · ·
T2

√ √ √ √ √
· · · ·

T3
√ √ √ √ √

· · · ·
BMM

√
·

√ √ √ √
· · ·

TA
√ √ √ √ √ √

∗ ∗ ∗
SU1

√ √ √ √ √ √
∗ ∗ ∗

SU2
√ √ √ √ √ √ √

∗ ∗√
: resists such an attack

∗ : partially resists such an attack, under certain assumptions
· : does not protect against such an attack

sophisticated attack in which it intercepts MS in order
to learn s.

Table II summarises the protocol’s privacy and security
properties, and compares the protocol to the prior art intro-
duced in section III.

B. Performance

The protocol proposed in section IV has the following
performance characteristics.
• Scalability: a server uses a look-up table for tag iden-

tification. As a result, a server can match a received
anonymous identifier to a tag using its look-up table
in O(1) time, without needing a linear search. The
protocol is scalable in the sense that a server only takes
constant time to authenticate a tag, and tag delegation
is straightforward, as stated in section V. However, if
a tag is queried more than m times without updating
the tag secrets (case 3), the tag will reply with M1

and M2, and in this case the server needs to perform a
linear search to authenticate the tag.

• Computation: in normal operation, i.e. when using TA
and SU1, a tag does not need to generate any pseudo-
random numbers. However, in SU2, a tag needs to
generate a pseudo-random number in order to resist
being traced. A tag needs to perform two hash function
computations in the most common case (TA), four hash
function computations in SU1, and three hash function
computations in SU2. A server performs only one hash
function computation in TA. In SU1 and SU2, a server
must perform m′ hash function computations in order
to generate a new secret and new identifiers for a tag;
fortunately these values can be precomputed.

• Communication: TA involves only two messages. SU1

and SU2 require one additional message.
• Storage Capacity: a tag needs a long term memory of

3l bits to store k, x and xm.
The performance of the protocol is compared to the prior

art in Table III. The comparison shows that the performance

Table III
PERFORMANCE PROPERTIES

C1 C2 C3 C4
HM I, a, a′ 3HF 0 3
D I 4HF 1 3
LK s, w, c 4PRF 1 3
T1 k, t, tm 1HF 0/1 2
T2 k, t, tm 2HF 1/2 2
T3 k, t, tm (ν+2)HF 1/3 2
BMM k, r, q, b, c 1/2PRF 0 3
TA 2HF 0 2
SU1 k, x, xm 4HF 0 3
SU2 3HF 1 3

C1 : The type of secrets stored in a tag
C2 : The type and number of cryptographic functions required in a tag
C3 : The number of pseudo-random numbers required in a tag
C4 : The number of exchanged messages

of the proposed protocol compares favourably with existing
schemes. In Table III, HF is a hash function computation,
PRF is a pseudo-random function computation, I is a tag
identifier, a is a transaction number, a′ is the last successful
transaction number, s is a tag secret, w is a server validator,
c is a counter, k is a key, t is a time-stamp, tm is the highest
possible time-stamp, ν is the number of successive iterations
of a hash function, r is a one-time pseudonym, q is a seed,
b is a boolean variable mode, and / denotes or.

VII. CONCLUDING REMARKS

We have identified desirable privacy, security and per-
formance properties for RFID authentication protocols. We
have reviewed previously proposed scalable RFID identifi-
cation and authentication protocols which take only constant
time to identify a tag using a look-up table. All these
schemes have significant security or performance drawbacks.

The main contribution of this paper is to propose a
scalable RFID pseudonym protocol that meets the identified
requirements. The protocol has two features supporting scal-
ability; a server takes only O(1) work for tag authentication,
and tag delegation is straightforward.

The protocol is divided into regular and irregular states.
The regular state has two variants: tag authentication and
secret update (I). In both cases, the server takes constant
time to authenticate a tag. An irregular state occurs if the
secret update (I) process fails. In such a case, the secret
update (II) process is required. This process uses a revised
version of the SM protocol [17] that is newly proposed here.

REFERENCES

[1] G. Avoine. Cryptography in Radio Frequency Identification
and Fair Exchange Protocols. PhD thesis, Ecole Polytech-
nique Federale de Lausanne (EPFL), Lausanne, Switzerland,
December 2005.

[2] G. Avoine and P. Oechslin. RFID traceability: A multilayer
problem. In A. Patrick and M. Yung, editors, Financial
Cryptography — FC’05, volume 3570 of Lecture Notes in
Computer Science, pages 125–140, Roseau, The Common-
wealth Of Dominica, February–March 2005. IFCA, Springer-
Verlag.

[3] A. Bondi. Characteristics of scalability and their impact
on performance. In Proceedings of the 2nd International
Workshop on Software and Performance — WOSP 2000,
pages 195–203, Ottawa, Ontario, Canada, September 2000.
ACM Press.

[4] M. Burmester, B. de Medeiros, and R. Motta. Anonymous
RFID authentication supporting constant-cost key-lookup
against active adversaries. Journal of Applied Cryptography,
1(2):79–90, 2008.

[5] S. Cai, Y. Li, T. Li, and R. Deng. Attacks and Improvements
to an RFID Mutual Authentication Protocol and its Exten-
sions. In The second ACM Conference on Wireless Network
Security — WiSec’09, pages 51–58, Zurich, Switzerland,
March 2009. ACM Press.

[6] H. Chien and C. Chen. Mutual authentication protocol for
RFID conforming to EPC class 1 generation 2 standards.
Computer Standards & Interfaces, 29(2):254–259, February
2007.

[7] T. Dimitriou. A lightweight RFID protocol to protect against
traceability and cloning attacks. In Conference on Security
and Privacy for Emerging Areas in Communication Networks
— SecureComm 2005, pages 59–66, Athens, Greece, Septem-
ber 2005. IEEE.

[8] S. Fouladgar and H. Afifi. A simple privacy protecting scheme
enabling delegation and ownership transfer for RFID tags.
Journal of Communications, 2(6):6–13, November 2007.

[9] A. Henrici and P. Müller. Hash-based enhancement of
location privacy for radio-frequency identification devices
using varying identifiers. In R. Sandhu and R. Thomas,
editors, International Workshop on Pervasive Computing and
Communication Security — PerSec 2004, pages 149–153,
Orlando, Florida, USA, March 2004. IEEE Computer Society.

[10] A. Juels. RFID security and privacy: A research survey. IEEE
Journal on Selected Areas in Communications, 24:381–394,
February 2006.

[11] C. Lim and T. Kwon. Strong and robust RFID authentication
enabling perfect ownership transfer. In P. Ning, S. Qing, and
N. Li, editors, Conference on Information and Communica-
tions Security — ICICS ’06, volume 4307 of Lecture Notes
in Computer Science, pages 1–20, Raleigh, North Carolina,
USA, December 2006. Springer-Verlag.

[12] D. Molnar, A. Soppera, and D. Wagner. A scalable, dele-
gatable pseudonym protocol enabling ownership transfer of
RFID tags. In B. Preneel and S. Tavares, editors, Selected
Areas in Cryptography — SAC 2005, volume 3897 of Lec-
ture Notes in Computer Science, pages 276–290, Kingston,
Canada, August 2005. Springer-Verlag.

[13] M. Ohkubo, K. Suzki, and S. Kinoshita. Cryptographic ap-
proach to “privacy-friendly” tags. In RFID Privacy Workshop,
MIT, MA, USA, November 2003. http://www.rfidprivacy.us/
2003/agenda.php.

[14] K. Ouafi and R. C.-W. Phan. Traceable Privacy of Recent
Provably-Secure RFID Protocols. In Proceedings of the
6th International Conference on Applied Cryptography and
Network Security — ACNS 2008, volume 5037 of Lecture
Notes in Computer Science, pages 479–489, New York City,
New York, USA, June 2008. Springer-Verlag.

[15] A. Shamir. SQUASH — A New MAC with Provable
Security Properties for Highly Constrained Devices Such as
RFID Tags. In Fast Software Encryption: 15th International
Workshop — FSE 2008, Revised Selected Papers, volume
5086/2008 of Lecture Notes in Computer Science, pages 144–
157, Lausanne, Switzerland, February 2008. Springer-Verlag.

[16] B. Song. Server Impersonation Attacks on RFID Proto-
cols. In The Second International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies —
UBICOMM 08, pages 50–55, Valencia, Spain, October 2008.
IEEE Computer Society.

[17] B. Song and C. J. Mitchell. RFID authentication protocol for
low-cost tags. In V. D. Gligor, J. Hubaux, and R. Poovendran,
editors, ACM Conference on Wireless Network Security —
WiSec ’08, pages 140–147, Alexandria, Virginia, USA, April
2008. ACM Press.

[18] G. Tsudik. YA-TRAP: Yet another trivial RFID authentication
protocol. In Fourth IEEE Annual Conference on Pervasive
Computing and Communications — PerCom 2006, pages
640–643, Pisa, Italy, March 2006. IEEE Computer Society.

[19] G. Tsudik. A family of dunces: Trivial RFID identification
and authentication protocols. In N. Borisov and P. Golle,
editors, Privacy Enhancing Technologies, 7th International
Symposium — PET 2007, volume 4776 of Lecture Notes in
Computer Science, pages 45–61, Ottawa, Canada, June 2007.
Springer-Verlag, Berlin.

[20] T. van Deursen and S. Radomirović. Attacks on RFID
Protocols. Cryptology ePrint Archive, Report 2008/310, July
2008.

[21] S. Weis. Security and privacy in radio-frequency identification
devices. Master’s thesis, Massachusetts Institute of Technol-
ogy (MIT), Massachusetts, USA, May 2003.

[22] S. Weis, S. Sarma, R. Rivest, and D. Engels. Security and
privacy aspects of low-cost radio frequency identification sys-
tems. In D. Hutter, G. Müller, W. Stephan, and M. Ullmann,
editors, International Conference on Security in Pervasive
Computing — SPC 2003, volume 2802 of Lecture Notes
in Computer Science, pages 454–469, Boppard, Germany,
March 2003. Springer-Verlag.

