
EMAP: An Efficient Mutual-Authentication
Protocol for Low-cost RFID Tags

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M. Estevez-Tapiador,
and Arturo Ribagorda

Computer Science Department, Carlos III University of Madrid,
{pperis, jcesar, jestevez, arturo}@inf.uc3m.es

Abstract. RFID tags are devices of very limited computational capabil-
ities, which only have 250-3K logic gates that can be devoted to security-
related tasks. Many proposals have recently appeared, but all of them
are based on RFID tags using classical cryptographic primitives such as
PRNGs, hash functions, block ciphers, etc. We believe this assumption
to be fairly unrealistic, as classical cryptographic constructions lie well
beyond the computational reach of very low-cost RFID tags. A new ap-
proach is necessary to tackle this problem, so we propose an extremely
efficient lightweight mutual-authentication protocol that offers an ade-
quate security level for certain applications and can be implemented even
in the most limited low-cost RFID tags, as it only needs around 150 gates.

Keywords: Ubiquitous Computing, RFID, Tag, Reader, Privacy, Track-
ing, Pseudonym, Mutual-authentication

1 Introduction

Low-cost Radio Frequency Identification (RFID) tags affixed to consumer items
as smart labels are emerging as one of the most pervasive computing technologies
in history. This presents a number of advantages, but also opens a huge number of
security problems that need to be addressed before their successful deployment.
The most important security questions are privacy and tracking, but there are
some others worth to mention, such as physical attacks, denial of service, etc.

The low cost demanded for RFID tags (0.05-0.1¤) forces the lack of resources
for performing true cryptographic operations. Typically, these systems can only
store hundreds of bits and have 5K-10K logic gates, but only 250-3K can be
devoted to security tasks. Despite these restrictions, since the work of Sarma
et. all [9] in 2002, most of the proposed solutions [1, 2, 15] are based on the use
of hash functions. Although this apparently constitutes a good and secure solu-
tion, engineers face the non-trivial problem of implementing cryptographic hash
functions with only between 250-3K gates. In most of the proposals, no explicit
algorithms are suggested and finding one is not an easy issue since traditional
hash functions (MD5, SHA-1, SHA-2) cannot be used [11]. In [16] we find a re-
cent work on the implementation of a new hash function with a reduced number

of gates, but although this proposal seems to be light enough to fit in a low-cost
RFID tag, the security of this hash scheme remains as an open question.

The remainder of the paper is organized as follows. In Sect. 2, we prose an
Efficient Mutual-Authentication Protocol (EMAP) for low-cost RFID tags. A
security evaluation and performance analysis of this new protocol is presented
in Sect. 3. In Sect. 4, the proposed architecture for implementing our protocol
is explained in detail. Finally, concluding remarks appear in Sect. 5.

2 Efficient-Lightweight Protocol

Like other authors, we think that the security of low-cost RFID tags can be
improved with minimalist cryptography [5, 12]. Following this direction, an ex-
tremely efficient lightweight mutual-authentication protocol, named EMAP, is
proposed in this paper.

2.1 Suppositions of the Model

Our protocol is based on the use of pseudonyms, concretely on index-pseudonyms
(IDSs). An index-pseudonym (96-bit length) is the index of a table (a row) where
all the information about a tag is stored. Each tag has an associated key which
is divided in four parts of 96 bits (K = K1 ‖ K2 ‖ K3 ‖ K4). As the IDS
and the key (K) need to be updated, we need 480 bits of rewritable memory
(EEPROM or FRAM) in total. A ROM memory to store the 96-bit static tag
identification number (ID) is also required.

Costly operations such as random number generation will be done by readers.
On the contrary, as tags are very limited devices that only have less than 1K
logic gates for security functions, only simple operations are available: bitwise xor
(⊕), bitwise and (∧), and bitwise or (∨). Multiplication have not been included
because is a very costly operation [6].

Due to the fact that most low-cost tags are passive, the communication must
be initiated by readers. We also suppose that both the backward and the forward
channel can be listened by an attacker. Finally, we assume that the communica-
tion channel between the reader and the database is secure.

2.2 The Protocol

We can split our protocol proposal in four main stages: tag identification, mutual
authentication, index-pseudonym updating, and key updating. In this section, we
outline how the protocol works, while in the next one a security and performance
analysis is presented.

Tag Identification Before starting the protocol for mutual authentication, the
reader should identify the tag. The reader will send a hello message to the tag,
which answers by sending its current index-pseudonym (IDS). By means of this
IDS, the reader will be able to access to the secret key of the tag (K = K1 ‖
K2 ‖ K3 ‖ K4), which is necessary to carry out the next authentication stage.

Tag Identification:
Reader → Tag: hello
Tag → Reader: IDS

Mutual Authentication:
Reader → Tag: A ‖ B ‖ C
Tag → Reader: D ‖ E

A = IDS
(n)

tag(i) ⊕K1
(n)

tag(i) ⊕ n1 (1)

B = (IDS
(n)

tag(i) ∨K2
(n)

tag(i))⊕ n1 (2)

C = IDS
(n)

tag(i) ⊕K3
(n)

tag(i) ⊕ n2 (3)

D = (IDS
(n)

tag(i) ∧K4
(n)

tag(i))⊕ n2 (4)

E = (IDS
(n)

tag(i) ∧ n1 ∨ n2)⊕ IDtag(i)

4⊕
I=1

KI
(n)

tag(i) (5)

Fig. 1. EMAP Protocol

Mutual Authentication Our protocol consists in the exchange of two mes-
sages between the reader and the tag. An execution of the protocol is showed
in Figure 1. The

⊕N
I=1 operation represents an N-elements addiction with the

bitwise xor operator (K1⊕K2 ⊕ ... ⊕KN).

- Reader Authentication: The reader will generate two random numbers n1
and n2. With n1 and the subkeys K1 and K2, the reader will generate the
submessages A and B. With n2 and K3, it will generate the submessage C.

- Tag Authentication: With the submessages A and B, the tag will authenti-
cate the reader and obtain n1. From the submessage C, the tag will obtain
the random number n2, that will be used in the index-pseudonym and key
updating. Once these verifications are performed, the tag will generate the
answer message. This message will be composed of two parts D and E. The
submessage D will allow to authenticate the tag and by means of E its static
identifier will be transmitted in a secure form.

We have analyzed the statistical properties of these five submessages with
three well-known suites of randomness tests, namely ENT [13], DIEHARD [7]
and NIST [10]: we have generated a 300MB-file for every message. Due to ex-
tension restrictions the reports are not shown in the paper.1 The results point
to ensure submessages are not easily distinguishable from a random source, not
even for the eavesdropper/cryptanalyst. As we can verify in Equation 5, submes-
sage E uses more operations than the rest. We have put particular emphasis on
the properties of submessage E due to the fact that in it the tag sends its more
valuable information: the static identification number (ID).

Pseudonym Index Updating Once the tag and the reader have mutually
authenticated, each one has to update the index-pseudonym.

IDS
(n+1)
tag(i) = IDS

(n)
tag(i) ⊕ n2⊕K1(n)

tag(i) (6)

1 The whole reports are available in http://163.117.149.208/emap/

The statistical properties of this sequence is good owing to the use of an xor
with a random number (n2). In connection with the speed requirements, we have
only used three basic operations (bitwise xor).

Key Updating The key updating will be carry out, as will the index-pseudonym
updating, after the mutual authentication. As tags are very computationally
constrained devices, this task should be made only by using efficient operations:
bitwise xor (⊕), bitwise and (∧), and bitwise or (∨). These operations have al-
ready been implemented in the tag for the normal protocol running, so its use
will not imply an increase in the gate counting. In order to improve the security
of the key updating algorithm, a parity function will be used.2 Nevertheless,
the speed requirements of tags should be kept in mind; a tag must be able to
answer 50 times/sec (see Sect. 4). These speed requirements put a limit on the
number of operations that can be performed with each component of the key
(KI). Taking all these considerations into account, the proposed equations for
key updating are the following ones:

K1(n+1)
tag(i) = K1(n)

tag(i) ⊕ n2⊕ (IDtag(i)(1 : 48)||Fp(K4(n)
tag(i))||Fp(K3(n)

tag(i))) (7)

K2(n+1)
tag(i) = K2(n)

tag(i) ⊕ n2⊕ (Fp(K1(n)
tag(i))||Fp(K4(n)

tag(i))||IDtag(i)(49 : 96)) (8)

K3(n+1)
tag(i) = K3(n)

tag(i) ⊕ n1⊕ (IDtag(i)(1 : 48)||Fp(K4(n)
tag(i))||Fp(K2(n)

tag(i))) (9)

K4(n+1)
tag(i) = K4(n)

tag(i) ⊕ n1⊕ (Fp(K3(n)
tag(i))||Fp(K1(n)

tag(i))||IDtag(i)(49 : 96))(10)

The statistical properties of these four sequences are good because of in
each sequence there is an xor with a random number (n1 or n2). According
to the speed requirements, for the worst case, which is obtained on the 8 bit
architecture, a tag can authenticate 89 times per second, so we are able to
successfully fulfill the speed requirements in all cases (see Sect. 4).

3 Evaluation

3.1 Security Analysis

Once we have presented the proposed mutual-authentication protocol, we will
evaluate its security, studying the same properties that Yang analyzes in [15].

1. User Data Confidentiality
The tag ID must be kept secure to guarantee user privacy. The tag sends in
the message E (E = (IDS

(n)
tag(i) ∧ n1 ∨ n2)⊕ IDtag(i)

⊕4
I=1 KI

(n)
tag(i)) hiding

the tag ID to a nearby eavesdropper equipped with an RFID reader.
2 Parity function (Fp(X)): The 96-bit number X is divided in twenty four 4-bit blocks.

For each block we obtain a parity bit, getting 24 parity bits. See Sect. 4 for more
details.

2. Tag Anonymity
As the ID of the tag is static, we should send it, and all other interchanged
messages in seemingly random wraps (i.e. to an eavesdropper, random num-
bers are sent). As we have seen, readers generate the message (A||B||C).
This message will serve to authenticate him, as well as to transmit in a
secure form the random numbers n1 and n2 to the tag. This two random
numbers (n1, n2) will be used to hide the tag ID as well as to update the
index-pseudonym and the associated key. By means of this mechanism we
are able to make almost all the computational load to fall on the side of
RFID readers, since one of our hypothesis is that very low-cost tags can
not generate random numbers. Thus, tag anonymity is guaranteed and the
location privacy of a tag owner is not compromised either.
There is one interesting scenario that we will explain with more detail in the
following, as one could think that in this case, the tracking of a tag owner
is possible. In this scenario, the attacker sends hello messages to the tag
and receives as answer the IDS from it. Then, he stops the authentication
step. A little time later he repeats the process, hoping that the IDS has
not changed yet. We know that if the authentication process failed, the
IDS can not be updated. The attacker can not generally track the owner
tag because it is very probable that between two successive requests of the
attacker, the tag is read by one or several legitimate readers, who will update
the IDS. If an intruder wants to guarantee that the IDS has not changed,
it needs to send more than 50 answers/sec in order to saturate the tag,
so not allowing a legitimate reader to access it. In this case, this attack
would be considered a DoS attack, which is an inherent problem in RFID
technology as it happens in other technologies that use the radio channel.
Unfortunately, for the moment, there is no known solution for it (instead of
spread spectrum).

3. Data Integrity
A part of the memory of the tag is rewritable, so modifications are possible.
In this part of the memory, the tag stores the index-pseudonym and the
key associated with itself. If an attacker does succeed in modifying this part
of the memory, then the reader would not recognize the tag and should
implement the updating protocol of the database.

4. Mutual Authentication
We have designed the protocol with both reader-to-tag authentication (mes-
sage A ‖ B ‖ C), and tag-to-reader authentication (message D ‖ E).

5. Forward Security
Forward security is the property that privacy of messages sent today will be
valid tomorrow [8]. Since key updating is fulfilled after the mutual authen-
tication, a future security compromise on an RFID tag will not reveal data
previously transmitted.

6. Man-in-the-middle Attack Prevention
A man-in-the-middle attack is not possible because our proposal is based on
a mutual authentication, in which two random numbers (n1, n2), refreshed
with each iteration of the protocol, are used.

Table 1. Comparison Between Protocols

Protocol HLS [14] EHLS [14] HBVI [4] MAP [15] EMAP

User Data Confidentiality × 4 4 © ©
Tag Anonymity × 4 4 © ©
Data Integrity 4 4 © © 4

Mutual Authentication 4 4 4 © ©
Forward Security 4 4 © © ©

Man-in-the-middle Attack Prevention 4 4 × © ©
Replay Attack Prevention 4 4 © © ©

Forgery Resistance × × × © ©
Data Recovery × × © © ×

†† Notation: © Satisfied 4 Partially satisfied × Not Satisfied

7. Replay Attack Prevention
An eavesdropper could store all the messages interchanged between the
reader and the tag (different protocol runs). Then, he can try to imper-
sonate a reader, re-sending the message (A ‖ B ‖ C) seen in any of the
protocol runs. It seems that this could cause the losing of synchroniza-
tion between the database and the tag, but this is not the case because
after the mutual authentication, the index-pseudonym (IDS) and the key
K (K = K1 ‖ K2 ‖ K3 ‖ K4) were updated.

8. Forgery Resistance
The information stored in the tag is sent operated (bitwise xor (⊕), bitwise
and (∧), and bitwise or (∨)) with random numbers (n1, n2). Therefore the
simple copy of information of the tag by eavesdropping is not possible.

9. Data Recovery
Intercepting or blocking of messages is a denial-of-service attack preventing
tag identification. As we do not consider that these attacks can be a serious
problem for very low-cost RFID tags, our protocol does not particularly
focus on providing data recovery.
In those scenarios in which this problem is considered important, an ex-
tended version of the protocol is possible and quite straightforward. In this
implementation each tag will have l + 1 database records, the first one asso-
ciated with the actual index-pseudonym (n) and the others associated with
the potential next index-pseudonyms (n + 1, ... , n + l). Moreover, each tag
will need k bits additionally of ROM memory to store the Associated Data
Base Entry like in [4]. As before, the reader will use the IDS to access all
the information associated with the tag. The reader will store a potential
IDS each time the answer of the tag is blocked (uncertainty state). Once
the tag and the reader have been authenticated mutually, the potential IDS
could be deleted (synchronized state). The storage of the potential IDS will
allow to easily recover from the lose or interception of messages.

Table 1 shows a comparison of the security requirements made by Yang [15],
as met by different proposals in the literature. We have added our proposal
(EMAP) in the last column.

Table 2. Computational Loads and Required Memory

Protocol Entity HLS [14] EHLS [14] HBVI [4] MAP [15] EMAP

No. of T 1 2 3 2 ¬
Hash Operation B ¬ Nt 3 2Nt ¬
No. of Keyed R ¬ ¬ ¬ 1 ¬

Hash Operation B ¬ ¬ ¬ 1 ¬
No. of T ¬ 1 ¬ ¬ ¬

RGN Operation R ¬ ¬ ¬ 1 ¬
B ¬ ¬ 1 ¬ ¬

No. of T ¬ ¬ ¬ 4 22
Basic Operation1,2 R + B ¬ ¬ ¬ 2(Nt+1) 25
No. of Encryption B ¬ ¬ ¬ 1 ¬
No. of Decryption R ¬ ¬ ¬ 1 ¬
Number of Authentication Steps 6 5 5 5 4

Required T 1 1
2 L 1L 3L 2 1

2 L4 6L
Memory Size R+B 2 1

2 L 1 1
2 L 9L 9 1

2 L 6L

†† Notation: ¬ : Not require Nt: Number of Tags L: Size of Required Memory
1Basic Operations: Bitwise xor (⊕), Bitwise and (∧), and Bitwise or (∨)
2Parity function has been included as a basic operation

3.2 Performance Analysis

Before evaluate the security of the protocol a performance analysis will be pre-
sented (see Table 2), considering the following overheads (computation, storage,
and communication) as in Yang [15].

1. Computation Overhead

Low-cost RFID tags are very limited devices, with only a small amounts of
memory, and very constrained computationally (<1K logic gates to security-
related tasks). Additionally, one of the main drawbacks that hash-based
solutions have is that the load on the server side (R+B) is proportional
to the number of tags, as it happens in Yang’s solution [15]. Our proposal
(EMAP) have completely solved this problem by using an index-pseudonym.

2. Storage Overhead

As Yang does, we assume that all components are L-bits sized, that the RNG
and the hash function are h, hk : {0, 1}∗ → {0, 1} 1

2 L and r εU {0, 1}L. As
we see in Sect. 2.1 each tag has to store an L-bit index-pseudonym (IDS)
and an associate key (K) of four L-bit components. Moreover, the tag has
to store an unique L-bit identification number (ID). The reader has to store
the same information, so it requires a memory of 6L bits.

3. Communication Overhead

As we can see in Table 2, according the number of interchanged messages
to accomplish mutual authentication tag-reader, our protocol is the most
efficient. As low cost tags are passive and that the communication can only
be initiated by a reader, four rounds may be considered as a reasonable
number of rounds for mutual authentication in RFID environments.

IDS

K3

K2

ID

Register_1

Sequencier

bit-stream m bits m bits

m bits

output

C_1

m bits

XOR-m

AND-m

OR-m
m bits

m bits

m bits

C_2

K1

K4

Register_2Fp(x)

C_3

m bits

m bits

96 bits

24 bits

ALU

Parity-function unit

Fig. 2. Logic Scheme

4 Implementation

In this section, we will explain in detail the proposed architecture for implement-
ing our protocol. The proposed architecture is independent of the word length
used. We have analyzed the features of four different word length (m = 8, 24, 48,
96 bits). In Figure 2 we can see a scheme of the proposed architecture. On the
left of the figure we have the memory, which is filled with the index-pseudonym
(IDS), the key K (K1 ‖ K2 ‖ K3 ‖ K4), and the static identification number
(ID). The access to the memory is controlled by a sequencier. Due to the fact
that messages are build up of three or more components, we will need a m-bit
register to store intermediate results. In the middle of the figure we have the
Arithmetic Logic Unit (ALU). This unit will make the following m-bit opera-
tions: bitwise xor (⊕), bitwise and (∧), and bitwise or (∨). The ALU has two
inputs, one of these values stored in the memory and another which is selected
(c 1) between one of these three values: the bitstream, the value stored in the
register 1 and the the result of the parity-function unit. The control signal c 2
will select the operation that will be used in the ALU. At the bottom of the
figure we can see the parity-function unit. This unit will be used each time the
key is updated, in particular twice with each part of K (K1 ‖ K2 ‖ K3 ‖ K4).
In order to carry out the temporal requirements we have decided to implement
this function in just one block. This function has an input length of 96 bits
and a 24-bits output. The input is divided in blocks of 4 bits, which are pro-
cessed to obtain an output bit. For example, for the first four bits, x1 is xored
with x2, x3 is xored with x4, and finally the corresponding outputs are xored
((x1⊕ x2)⊕ (x3⊕ x4)). So for 96 bits of input, we need 72 logical gates (24x3)
for implementing the parity function. The output of this function is stored in
the register 2 of dimension m (m = 24, 48, 96 bits). The control signal c 3 will
select when a 24-bit shift has to be done in the register.

It is a common assumption that a maximum of 50 tags can be authenticated
per second. As in [3], due to the low-power restrictions of RFID tags, the clock
frequency must be set to 100 KHz. So, a tag may use up to 2000 clock cycles
to answer a reader. In the worse case of our protocol (m = 8 bits), we need
1120 clock cycles for running the protocol (mutual authentication, pseudonym
updating, and key updating). So, if we consider that the clock frequency is set
to 100KHz [3], this means that the tag answers in 11.2 milliseconds. A tag can
authenticate 89 times per second, so the temporary requirements are fulfilled in
all the cases.

Another important aspect to study is the number of logical gates necessary
for implementing the proposed protocol. The functions bitwise xor (⊕), bitwise
and (∧), and bitwise or (∨) will be implemented with the same number of logic
gates like the word length (m). As seen above, 72 logical gates will be needed for
implementing the parity function. Additionally, an extra 30% of logic gates are
added up for control functions. In the worst case (m = 96 bits) the protocol only
needs around 500 gates. Moreover, although we have not implemented the circuit
physically, due to the known fact that power consumption and circuit area are
proportional to the number of logical gates, it seems that our implementation
will be suitable even for very low-cost RFID tags.

Table 3. Features

Word’s length 8-bits 24-bits 48-bits 96-bits
Number of. ALU 24 72 144 288

Gates Parity Function 72 72 72 72
Control 29 43 65 108
Total 125 187 281 468

Number of Clock Cycles 1120 416 240 152
Answer/sec 89 240 417 658

5 Conclusions

RFIDs tags are devices limited to hundreds of bits of store, and with roughly
250-3K gates devoted to security-related tasks. Cryptographic primitives such
as PRNGs, block ciphers, and hash functions lie well beyond the computational
reach of very low cost RFID tags, but until now, most of the security solutions for
RFID are based on those. A new approach must be taken to tackle the problem,
at least for low-cost RFID tags. For this reason, we propose an extremely efficient
lightweight mutual-authentication protocol (EMAP) that could be implemented
in low-cost tags (<1K logic gates). In order to be able to use our proposal,
tags should be fitted with a small portion of rewritable memory (EEPROM
or FRAM) and another read-only memory (ROM). The assumption of having
access to rewritable memory is also made in all the existing solutions based on
hash functions.

In spite of being very limited in resources, the main security aspects of RFID
systems (privacy, tracking) have been consider in this article and solved efficiently

(less than 500 gates are needed even in the worst implementation, in our case
m = 96 bits). As shown in Table 2, our protocol displays superior benefits to
many of the solutions based on hash functions. So, not only we have been able
to avoid the privacy and tracking problems, but also many other attacks such
as the man-in-the-middle attack, replay attack, etc.

Finally, another paramount characteristic of our scheme is its efficiency: tag
identification by a valid reader do not require exhaustive search in the back-
end database. Furthermore, only two messages need to be exchanged in the
identification stage and another two in the mutual authentication stage.

References

1. E.Y. Choi, S.M. Lee, and D.H. Lee. Efficient RFID authentication protocol for
ubiquitous computing environment. In Proc. of SECUBIQ’05, 2005.

2. T. Dimitriou. A lightweight RFID protocol to protect against traceability and
cloning attacks. In Proc. of SECURECOMM’05, 2005.

3. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID
systems using the AES algorithm. In Proc. of CHES’04, volume 3156 of LNCS,
pages 357–370, 2004.

4. D. Henrici and P. Müller. Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In Proc. of PERSEC’04,
pages 149–153. IEEE Computer Society, 2004.

5. A. Juels. Minimalist cryptography for low-cost RFID tags. In Proc. of SCN’04,
volume 3352 of LNCS, pages 149–164. Springer-Verlag, 2004.

6. T. Lohmmann, M. Schneider, and C. Ruland. Analysis of power constraints for
cryptographic algorithms in mid-cost RFID tags. In Proc. of CARDIS’06, volume
3928 of LNCS, pages 278–288, 2006.

7. G. Marsaglia and W.W. Tsang. Some difficult-to-pass tests of randomness. Journal
of Statistical Software, Volume 7, Issue 3:37–51, 2002.

8. M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to “privacy-
friendly” tags. In RFID Privacy Workshop, 2003.

9. S.E. Sarma, S.A. Weis, and D.W. Engels. RFID Systems and Security and Privacy
Implications. In Proc. of CHES’02, volume 2523, pages 454–470. LNCS, 2002.

10. C. Suresh, Charanjit J., J.R. Rao, and P. Rohatgi. A caution-
ary note regarding evaluation of AES candidates on smart-cards. In
Second Advanced Encryption Standard (AES) Candidate Conference.
http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm, 1999.

11. Datasheet Helion Technology. MD5, SHA-1, SHA-256 hash core for Asic.
http://www.heliontech.com, 2005.

12. I. Vajda and L. Buttyán. Lightweight authentication protocols for low-cost RFID
tags. In Proc. of UBICOMP’03, 2003.

13. J. Walker. ENT Randomness Test. http://www.fourmilab.ch/ random/, 1998.
14. S.A. Weis, S.E. Sarma, R.L. Rivest, and D.W. Engels. Security and Privacy Aspects

of Low-Cost Radio Frequency Identification Systems. In Security in Pervasive
Comp., volume 2802 of LNCS, pages 201–212, 2004.

15. J. Yang, J. Park, H. Lee, K. Ren, and K. Kim. Mutual authentication protocol for
low-cost RFID. Ecrypt Workshop on RFID and Lightweight Crypto, 2005.

16. K. Yksel, J.P. Kaps, and B. Sunar. Universal hash functions for emerging ultra-
low-power networks. In Proc. of CNDS’04, 2004.

