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Abstract

The vast majority of works on RFID security focus only
on privacy and tracking (violation of location privacy).
However, in this paper we are interested in a new mecha-
nism that enables a pair of RFID tags to generate a proof
of having been simultaneously scanned by a reading device.
In 2004, Juels introduced this concept and presented a proof
named “yooking proof”. Saito and Sakurai (2005) showed
how Juels’s proof was vulnerable to replay attacks, and pro-
posed a new scheme based on using timestamps. Neverthe-
less, Piramuthu later demonstrated that this new proof was
also vulnerable to replay attacks. Although Piramthu’s pro-
posed scheme seems to be resistant to replay attacks, and
attack using multi-proofs sessions can be attained. Fur-
thermore, Piramuthu claims that privacy and location pri-
vacy is guaranteed in his scheme, which is not the case as
tags transmit their static identifiers in clear. A new anony-
mous proof, named “clumping proof”, is proposed here that
solves the multi-proofs session attack and provides privacy
while also protecting against tracking.

Index Terms— RFID, yooking-proofs, grouping-proofs,
security, privacy, tracking

1 Introduction

RFID is a pervasive technology, perhaps the most perva-
sive technology in history. One of the main problems that
ubiquitous computing has to solve before its wide develop-
ment is privacy [17]. Products labeled with insecure tags
could reveal sensitive information when queried by read-
ers. Moreover, even if we assume that tag’s contents are
secure, trucking (violation of location privacy) protection is
not guaranteed. Tags usually answer with the same identi-
fier.

In addition to the previous threats, there are some other
aspects that must be considered: eavesdropping, counter-
feiting, physical attacks, active attacks, etc. To depth in

all these matters we recommend the reading of [7, 10, 13]
where surveys of the most important advances in RFID
technology are presented.

In this paper, we are interested in a rather different
security-oriented problem. In 2004, Juels introduced the
problem of providing a proof for the simultaneous reading
of two RFID tags [6]. In other words, a proof that a pair
of RFID tags has been scanned simultaneously, but not nec-
essarily by the same reading device. In the future we refer
to this problem in general terms as the simultaneous scan-
ning problem. Concretely, Juels denominated his proof as
“yoking proof” (applying “yoke” wit its meaning “to join
together”).

2 Motivation and Related Work

The aim of Juels’s proof is to allow two tags to generate a
proof of having been scanned simultaneously, which is ver-
ifiable off-line by a trusted entity [6]. The proposal relies
on the assumption that the protocol will always terminate
within a given time interval. For example, in the UHF fre-
quency band, a frequency hooping by the reader is required
(t = 400 ms under FCC), which entails a termination of the
tag reading process in this interval. This assumption only
implies that each tag is read within a t interval, but it does
not imply that the two tags have been simultaneously read.
Consider the following example, tag A is read at time T1,
the reader waits Ts seconds, and finally tag B is read. Un-
der this scenario the reader has a proof that these two tags
have been consecutively read but no simultaneity is guaran-
teed, so the main proof objective is not met. This attack is
similar to the replay attack against the “yooking proof” pre-
sented by Saito et al. [15]. Additionally, the verifier would
not have any information about when the proofs were gen-
erated (initial and final time) as the verifier does not initiate
the proofs, and the proofs are not immediately sent to ver-
ifiers either. From all the above, the participation of the
verifier in the proof generation seems to be necessary.

As we mentioned above, Juels’s proposal is susceptible
to replay attacks. Although Saito a Sakurai proof continues
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to be vulnerable to this kind of attacks, they protocol will be
presented as a couple of interesting ideas can be extracted
from it. Following, Piramuthu’s proof will be presented.
Despite the fact that the protocol seems to be resistant to re-
play attacks, we will show how a multi-proof session attack
can be accomplished. Moreover, both protocols present pri-
vacy and tracking problems due to the fact that tag’s static
identifier is transmitted on the channel in clear.

Notation Used:

• Ti, V , R: an RFID tag, verifier, and reader

• PS: pseudonym derived from its static identifier (ID)

• r, rA, rB : random numbers (nonces)

• xi: secret keys shared between Ti and V

• xV : secret key of the Verifier

• MACxi [m]: a cryptographic message authentication code,
e.g. HMAC with secret key xi applied to message m. MAC:
{0, 1}d × {0, 1}∗ → {0, 1}d.

• TS: timestamp

• PAB : proof that A&B were scanned simultaneously

2.1 “Yooking proof”using a timestamp

Saito and Sakurai proposed a “yooking proof” using a
timestamp [15]. In this scheme, RFID tags compute a MAC
of a timestamp under a secret key. These keys are shared
between tags and verifier/s in advance. Following, the pro-
posed proof is described:

• A reader gets a timestamp TS from a database and
queries to TA and TB including TS in the query.

• TA computes mA = MACxA
[TS] and submits it to

the reader.

• The reader submits mA to TB .

• TB computes mB = MACxB
[TS, mA] and submits it

to the reader.

• The reader submits PAB = (A,B, TS,mB) to a veri-
fier V. The verifier V checks it using the shared secret
keys xA and xB .

As Piramuthu demonstrated [12], “grouping proofs” are
vulnerable to replays attacks too. Imagine the following
scenario: an attacker queries a tag TA with a future times-
tamp TS obtaining its corresponding answer mA. Next,
some time later, when time TS becomes true, a proof of si-
multaneous reading of TA and TB can be obtained by the
attacker, without the presence of tag TA.

Additionally, an exhaustive search can be accomplished.
Suppose that the timestamp TS has a 16 bits length (as de-
fined for time() function in DJGPP), and a tag reading

time is 400 ms. Under this scenario, an exhaustive search
trying all possible timestamps can be carried out in around
7 hours. Once all possible values are obtained, an attacker
may be able to impersonate tag TX . In the next section,
the selection of a suitable length value for this variable will
be discussed. According to Saito and Sakurai, timestamp
TS is generated by V and used to build the proof PAB in
order to check the time when the proof was generated. The
problem of this solution is that time is transmitted as a plain-
text, which allows attackers to construct future proofs. As a
consequence of this in our proposed proof timestamps will
still be used, but will be passed to the channel only after the
application of a MAC, thus in seemingly random wraps.

2.2 On Existence Proofs for RFID Tags

In 2006, a new proof inspired in Juels’s “yoking proofs”
was proposed by Piramuthu [12]. In it, the reader is as-
sumed to be authenticated by the verifier: first a random
number is obtained from V, and at the end of the process
the proof PAB is returned to V. Next, an execution of Pira-
muthu’s proof is outlined:

• A reader gets a nonce r from the verifier and queries
TA including r in the query.

• TA generates a random number rA using r as seed and
submits a = (A, rA) to the reader.

• The reader sends a request (request, rA, r) to TB .

• TB computes mB = MACxB
[rA, r] and generates a

random number rB with the seed r. Next, tag TB an-
swers (B, mB , rB) to the reader.

• The reader forwards mB to tag TA.

• TA computes mA = MACxA
[mB , rA] and sends it

back to the reader.

• The reader submits PAB =
(A,B, rA, rB , r,mA,mB) to a verifier V. The
verifier V checks it using shared secret keys (xA, xB)
and r.

3 Attacks against Piramuthu’s proof

In Piramuthu’s scheme, tag TB computes a MAC of a
nonce generated by the verifier (r) and a random number rA

generated by TA. Piramuthu states that the variable r is used
as a seed for generating rA but its use as an authentication
method is never mentioned. Due to this, the inclusion of rA

does not guarantee generation by TA , as only seed r (which
can be easily eavesdropped) is needed to obtain rA, and no
secret keys (xA) are involved. For that reason, Piramuthu’s
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Fig. 1. Multi-proof (N) session attack

protocol is vulnerable to a multi-proof (N) session attack as
we will show.

In any other case, when use of rA is oriented to-
wards providing authentication of the participant tags, Pi-
ramuthu’s protocol resembles a lot that of Juels’s [6]. The
only difference is that tags use counters ((rA = fxA

[cA])
instead of the seed r sent by the verifier (rA = fxA

[r]).
Function f could be derived from a keyed hash function, a
pseudo-random number generator, or from any other cryp-
tographic primitive. As Juels mentions, the vast majority
of tags can not execute standard cryptographic primitives,
so only light-weight functions are possible in low-cost en-
vironments.

Finally, note that in the case that rX is used to authenti-
cate tags, the multi-proof session attack does not work. A
multi-proof (N) session attack for “on existence proofs” is
described below, which is also illustrated in Fig. 1.

• A reader gets a random number r from the verifier and
queries TA, including r in the query.

• TA generates a random number rA using r as a seed,
and submits a = (A, rA) to the reader.

• The reader sends a request (request, rA, r) to TB .

• TB computes mB = MACxB
[rA, r] and generates a

random number rB with the seed r. Next, tag TB sends
(B, mB , rB) to the reader.

Next, the following process is repeated N times:

– The reader sends a request (request, mB , rA) to
TX .

– TX computes mX = MACxX
[mB , rA] and gen-

erates a random number rX with seed r. Next,
tag TX sends (X , mX , rX ) to the reader.

– The reader discards rX and submits PXB =
(rA, rB , r,mX ,mB) to a verifier V. The verifier
V checks it using the shared secret keys (xX , xB)
and the nonce r.

By means of this attack, an attacker is able to generate
a proof of simultaneous reading for any tag TX and tag TB

being present (only a passive listening of the air channel
is required). Additionally, there are some other drawbacks
that suggest a modification of the proof:

• Tags are very constrained devices with limited memory
and processing capacity. Piramuthu’s proofs relies on
the fact that tags support on-board a pseudo-random
number generator and a message authentication code.
This two requirements lie well beyond the capabilities
of a great number of RFID tags, specially the low-cost
ones. Therefore, the computing requirements of our
proposal have been designed to fit in this constrained
environment.

• Another interesting point, is the security analysis pre-
sented in Piramuthu’s scheme. The author claims nei-
ther privacy nor location privacy is jeopardized. This
is clearly not true because the static identifiers are in-
cluded in tag answers. In order to avoid these two
attacks, the identifiers should not be transmitted as a
plain text and should change each time a reader inter-
acts with a tag. This is also a feature of our proposal.
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4 Proposed protocol

This section is divided in three parts, in order to clar-
ify the exposition of the proposed proof. First, the main
concepts on which the proof is based are introduced. Ad-
ditionally, we briefly explain how a new high-entropy func-
tion has been obtained. Then the proposed proof, named
“clumping proof”, is presented. The name of clumping
proofs is based on the analogy with a tree � : the trunk
is the reader and the group of branches (clump) are the tags
that are to be read simultaneously. In the last section, we
present a security analysis of our proof.

4.1 Considerations

The proposed proof is inspired in “grouping proofs” and
“existence proofs”. More concretely, the protocol grounds
in the following principles:

• Timestamps are used for allowing the verifier to vali-
date when the proof starts and ends.

• Each tag has an “internal state”, in particular a counter
initialized to a random value.

• At the beginning, there is a mutual authentication
phase between the reader and the verifier. Only af-
ter this phase is successfully accomplished the proof
starts.

• All the inputs to a given tag (except the first one) are
derived from computations that can only be carried out
by fellow tags participating in the proof. This guaran-
tees freshness and causality.

• Due to the very limited tag resources, we assume that
they do not have on-board pseudo-random number
generators. This needs not be true, as the authors have
shown that PRNGs can be implemented even in low-
cost tags [11], but is a reasonable assumption when
they should also implement a MAC.

In previous works [6, 12, 15], tags always include static
identifiers in their answers. However, static identifiers
should be disguised (anonymized) before transmission in
order to avoid privacy and tracking problems. A common
solution to this problem will be to compute a hash func-
tion of the ID, but standard cryptographic primitives are not
at hand in this low-resource environments. A light-weight
function, instead, has been employed in our proposal. A
new function, named Nun, has been obtained by means of
Genetic Programming [8]. Particularly, the experimentation
has been performed with the lil-gp library [1]. We tried
to find a highly nonlinear, but efficient, function. This prop-
erty has been measured through the avalanche effect. In

Table 1. Function Nun
x1 = Nun[m, n]

SP = m
for(i=0;i<32;i++){
SP = (SP>>1)+(SP<<1) + n }

x1 = SP

fact, an even more demanding property has been used: the
Strict Avalanche Criterion [5].

In order to evaluate how nonlinear and unpredictable
Nun is, a sort of linear cryptanalysis has been applied
[9, 16]. We have assumed for this analysis that variables
have a length of 32-bits. After a random initialization of m
(the first Nun input), and for each mask pair, 225 32-bits
outputs haven been generated. Note, that the parameter n
is an incremental counter in our proposal. From the cal-
culations described above, we obtain that the bias of Nun
is bounded by 1

214.56 , which is only slightly worst than that
expected of a random function.

4.2 Anonymous clumping proofs

The proposed proof is described below. After a suc-
cessful mutual authentication phase between the reader and
the verifier, the reader asks the verifier for a new times-
tamp. However, the verifier does not send the timestamp
in plain text, but encrypted by means of a keyed hash func-
tion (t = gXV

[TS]). Next, the reader starts the protocol, as
illustrated in Fig. 2.

• The reader divides t in two halves (tMSB , tLSB) and
sends a query to TA including tMSB .

• Tag TA computes its new pseudonym (a1 =
Nun[IDA, counterA)] and builds an evidence (a2 =
MACxA

[tMSB ⊕ a1] that tMSB was seen be-
fore. Then, TA sends back a message (Y =
(a1, a2, counterA)) to the reader. Finally, TA incre-
ments its counter (counterA = counterA + 1).

• Reader sends a request (request, tLSB , a2) to TB .

• Tag TB calculates its new pseudonym (b1 =
Nun(IDB , counterB)) and computes the message
authentication code (b2 = MACxB

[a2, b1 ⊕
tLSB ]). Then, TB sends back a message (Z =
(b1, b2, counterB)) to the reader. After that, the
counter is incremented (counterB = counterB + 1).

• Reader forwards b2 to TA.

• TA computes a message authentication code mAB =
MACxA

[a2, b2] and sends back it to the reader.
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Fig. 2. Anonymous Clumping Proof

• Reader submits proof PAB = (Y, Z, mAB , t) to the
verifier V. The verifier first checks the validity of the
anonymous timestamp t, then verifies the clumping
proof using the shared secret keys (xA, xB).

4.3 Security Analysis

One of the most significative differences between
“clumping proofs” an other simultaneous scanning proofs
is that we have tried to address all the main security risks
commonly found in RFID technologies.

Particularly, we have avoided the transmission of the
static identifier in plain text over the channel, as the air
channel can be easily eavesdropped, revealing confidential
information and allowing a tracking attack. As such, we
provide security against these two threats.

Another problem commonly found in previous proposals
are replays attacks. In order to avoid this, all the inputs to
a given tag (except the first one) are derived from computa-
tions that can only be carried out by fellow tags participating
in the proof. This guarantees freshness and causality.

Additionally there are two other mechanisms to
strengthen the proof’s security. The protocol presents an
asymmetry: reader sends TLSB to the first tag and TMSB

to the second tag. Finally, tags include a counter (“internal
sate”) in their answers, which provide a sequence order in
the proofs.

One of the problems connected with the usage of times-
tamps is the exhaustive search problem as discussed in Sec-
tion II. If the length of the timestamp is fixed to 16 bits
the attack can be very easy. In our case, the output of a

keyed hash function is transmitted. Nevertheless, the length
of the input (timestamp) will be the parameter that will fix
the feasibility of this attack. Imagine the currently worst
scenario (the quickest one) where it is using RFID tags ac-
cording to Gen-2 specification, which allows high reading
speed of around 200 tags/sec [4]. Even under these condi-
tions, if the timestamp is fixed to a length greater than 32
bits, an attacker will have to interrogate the tag during more
than a year to search all possible values. So 32 bits seem, at
present speeds, as a secure choice for the timestamp lengths,
but no less that this should be used.

Finally, we can define the security of our protocol in
terms of a game, as done in [6]. It its assumed that tags
are initialized (secret keys and counter), and the adversary
(A ) may interact with tags {Ti} during a long period of
time. A will win the game if a submitted proof PAB is
accepted by the verifier. The success probability will be
denoted by δ. Applying the random-oracle model to the un-
derlaying cryptographic primitive, we can assert: Given a
random-oracle on MAC, the success probability δ of A
for clumping proofs is bounded to 2−d.

Proof: Let PAB = (Y, Z, mAB , t) where (Y =
(a1, a2, counterA)) and (Z = (b1, b2, counterB)).
Case A: Suppose that A did not sent initial message
(request, TMSB) to ask tag TA for a proof. Under the ran-
dom oracle assumption on MAC, the adversary could not
guess (a2 = MACxA

[tMSB ⊕ a1] with probability at most
2−d. Analogously, (b2 = MACxB

[a2, b1 ⊕ tLSB ]) and
mAB = MACxA

[a2, b2] could be correctly found with
probability at most 2−d. Similar arguments can be ap-
plied to Case 2: A sent (request, TMSB) to tag TA, but
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(request, tLSB , a2) did not send to tag TB and Case 3: A
did not send b2 to tag TA.

5 Discussions and Conclusions

In [2], Bolotnyy et al. introduce a new formulation prob-
lem, called anonymous yooking, which requires that tags
preserve its privacy during the execution of the proof. The
proposed scheme is based on the execution on tag of both a
PRNG and a keyed hash function, as in others well-known
proposals [3, 14]. Particularly, the tag transmits the output
of a keyed hash function instead of transmitting its static
identifier. However, the computational cost of this proposal
will be very high on the verifier’s side, as it has to accom-
plish an exhaustive search (0(N2)). In our case, we use a
pseudonym that is updated every time the tag is queried, and
which is difficult to predict (from past values) as described
in Section IV. Moreover, the result of this function is trans-
mitted together with a counter, thus easing the search pro-
cess in the verifier (which will take 0(N) steps). Since no
private information is transmitted during the proof, and all
messages are contained in random wraps (thus only seem-
ingly random values are sent over the channel), privacy and
privacy location is guaranteed.

The counter, together with the timestamp (t), provides
the grounds for having a temporal order in every exchanged
message in the proof. Specifically, suppose that PAB and
PAB′ are generated using the same anonymous times-
tamp. As proofs have been generated with (counterA,
counterA) and (counter′A, counter′B) respectively, where
counterA > counter′A and counterB > counter′B , it can
be demonstrated that P ′

AB was generated later than PAB .
To summarize, in this paper we present a new proof of

simultaneous tag scanning, named “clumping proofs”. All
literature we know in this area has been revised in order
to identify its principles and problems. Moreover, a new
attack to Piramuthu’s protocol is presented. In the proposal
we have put an special emphasis in solving all the security
concerns while using only minimal processing capability on
tags.
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