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Abstract

RFID technology arouses great interests from both its advocates and opponents because of the
promising but privacy-threatening nature of low-cost RFID tags. A main privacy concern in RFID
systems results from clandestine scanning through which an adversary could conduct silent tracking
and inventorying of persons carrying tagged objects. Thus, the most important security requirement
in designing RFID protocols is to ensure untraceability of RFID tags by unauthorized parties (even
with knowledge of a tag secret due to no physical security of low-cost RFID tags). Previous work in
this direction mainly focuses on backward untraceability, requiring that compromise of a tag secret
should not help identify the tag from past communication transcripts. However, in this paper, we
argue that forward untraceability, i.e., untraceability of future events even with knowledge of a
current tag secret, should be considered as an equally or even more important security property
in RFID protocol designs. Furthermore, RFID tags may often change hands during their lifetime
and thus the problem of tag ownership transfer should be dealt with as another key issue in RFID
privacy problems; once ownership of a tag is transferred to another party, the old owner should not
be able to read the tag any more. It is rather obvious that complete transfer of tag ownership is
possible only if some degree of forward untraceability is provided. We propose a strong and robust
RFID authentication protocol satisfying both forward and backward untraceability and enabling
complete transfer of tag ownership.

1 Introduction

Radio Frequency Identification (RFID) is an automated identification technology in which a small
transponder, attached to a real world object, receives and responds to radio-frequency queries from a
transceiver. The transponder is usually called an RFID tag while the transceiver is an RFID reader.
The RFID tag incorporates silicon chips with radio antennas for electronic operations and wireless
data transmissions. It tends to have extremely limited capabilities in every aspect of computation,
communication, and storage for economic viability. Passive tags are not equipped with an internal
power source, contrary to semi-passive or active tags with built-in batteries. They store authentic data
and respond for identification and authentication, with neither physical nor visual contact. The RFID
reader communicates with tags and cooperates with a backend database which contains information on
the tagged objects.

In fact, this technology is not fundamentally new; rather it has been around since the late 1960s
and is being used in the public domain [11]. Recently, RFID has aroused a great interest from various
communities due to the promising nature of small low-cost RFID tags in future smart applications.
Rapid RFID progress has already been made in retail sectors, such as Wal-Mart and Procter & Gamble,
as well as in government sectors, such as U.S. DoD and Postal Service [14]. The U.S. government also
has mandated adoption by Oct 26, 2006 of e-passports (biometrically-enabled RFID tags) by the 27
countries in the Visa-Waiver Program [16]. It is widely believed that RFID tags will more rapidly
spread over and its cost will go down fast in the near future.

RFID systems however raise a lot of privacy concerns, mainly due to the possibility of clandestine
tracking and inventorying of tags [27, 30, 24, 5, 15, 16, 14]. For example, adversarial parties equipped
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with commodity RFID readers may trace a person carrying a tagged item by recognizing the same tag
in different places at different times. This traceability problem is considered as the biggest security
challenge to general acceptability and wide-scale deployment of RFID technology. Actually the boycott
movement from those fearing privacy infringement made companies like Benetton and Gillette drop or
reconsider their RFID-tagging plans [7, 29]. Fortunately, a number of studies have also been done for
handling such security and privacy issues in RFID systems [17, 24, 10, 13, 19, 4, 8, 23]. The approaches
taken in these studies vary, from schemes based on weak but realistic models to strong cryptographic
techniques, and each approach may have its own merit and demerit.

In this paper, we are more interested in a stronger security model, assuming that tag secrets may be
read by an adversary, since most low-cost RFID tags have no protection capability of the tag memory.
Since reading the tag memory content endows the adversary with full capability of the tag from the
moment, it is very important to see how the past and the future transactions of the tag are related
with the current internal state of the tag at the time of memory break-in. This observation brings
us the security notions of backward (resp. forward) untraceability, meaning that knowledge of a tag’s
current internal state must not help identify the tag’s past (resp. future) interactions.1 Most previous
studies focus on backward untraceability and, as far as we know, no attention has been paid explicitly
to forward untraceability yet. In this paper, we would like to call our attention to the importance of
forward untraceability and related issues.

We argue that forward untraceability is even more important than backward untraceability in RFID
systems. Suppose that compromise of tag secrets results in complete loss of control over the tags. Then,
it may be catastrophic if tag secrets are compromised in some point of tag deployment or during their
circulation within supply chains; then it would be much easier to trace the tags and reproduce cloned
tags. Another important related issue is the problem of ownership transfer. Since tags may change
hands frequently during their lifetime, it is certainly necessary to provide some means of ownership
transfer of a tag from one party to another. Ownership of a tag means the ability to read the tag and
thus ownership transfer should guarantee that once ownership of a tag is transferred, the tag should
be able to be read only by the new owner but never by the old owner. Such a complete transfer of tag
ownership would be impossible unless some degree of forward untraceability is provided, since the old
owner would have already owned all the information necessary to control the tag. Note that we are
talking about perfect ownership transfer between users, contrary to Molnar et al.’s temporary ownership
transfer or time-limited access delegation [23] (See Section 4 for more details).

Our Contribution. As discussed above, there is of no doubt on the importance of forward untrace-
ability, in addition to traditional backward untraceability, in designing RFID authentication protocols.
Backward untraceability is easy to achieve by updating tag secrets based on a one-way key chain and has
been widely studied in the literature. However, it is never easy to achieve forward untraceability using
cryptographic techniques in low-cost RFID tags, due to the very limited resources available in such tags.
The mobility of tagged items is our primary finding as a means of achieving forward untraceability with
little increase of complexity. That is, even if an adversary learns the tag secret of a particular person’s
belonging, he will not be able to physically track the target item all the way from the moment of tag
break-in. Thus, assuming that it is not possible for the adversary to eavesdrop all the interactions
of the target tag afterwards, we will be able to completely refresh the tag secret in synchronization
with the backend database by injecting into the tag secret the shared randomness involved in every
successful authentication. In this paper, we first bring the notion of forward untraceability explicitly
and rigorously in the design of RFID authentication protocols and propose such a protocol achieving
both requirements of forward and backward untraceability. Furthermore, we show that our protocol
enables perfect transfer of tag ownership between users. This feature will be essential in trading tagged
objects in the real world. We also show that this feature can be used to delegate access to tags to
potentially untrustworthy readers for distributed processing of a central database and may help thwart
tag cloning by refreshing the tag secret whenever necessary.

1Note that we used the terms ‘forward’ and ‘backward’ opposite to usual definitions. See Section 2 for our justification.
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Figure 1: The top-level communication and security model for RFID systems

2 RFID Systems and Security

2.1 The Communication Model

An RFID system consists of three main entities such as RFID tags, RFID readers, and a backend
database server, along with communication channels between them. Figure 1 depicts the high-level
view of the communication and security model for conducting RFID authentication in general. The
channels between the tag and the reader are wireless radio channels which can be read or engaged by an
adversary, while those between the reader and the database might be wired channels which are usually
assumed secure. The channel from a reader to a tag is called the forward channel and its opposite is the
backward channel. Due to the difference of signal strengths flowing in different directions, the adversary
may have in general more chances to read the forward channel. Since we can’t imagine physically secure
tag chips in most low-cost RFID tags, it is reasonable to assume that the tag memory could be read
by an adversary. In this respect, we may view read access to the tag memory as another hypothetical
channel, called the memory channel [2], wiretapable by the adversary.

It is still a challenging task to design and analyze RFID authentication protocols since the capabilities
of passive tags are extremely limited. The problem becomes rather paradoxical in the context of tag
authentication without public key cryptography. Actually a legitimate reader cannot authenticate itself
to a tag until it knows which key to use, requiring the tag’s identity ahead, while the tag does not want
to reveal its identity to an unauthenticated reader for privacy reasons. In Figure 1, the reader may
shout without knowing the tag’s identity in the first flow, and the tag should not reveal its identity
to an illegitimate reader while whispering in the second flow. The third flow may be necessary for
authenticating the reader and possibly updating the tag’s internal state.

2.2 Forward versus Backward Untraceability.

In the above communication model, an adversary is able to collect a set of readings on both the forward
and backward communication channels and also to tamper with a target tag’s memory channel to learn
its internal state at a certain moment. Thus we need to define untraceability of a tag in either direction
of time travels from the moment of tag memory break-in. This brings us the notions of backward and
forward untraceability. Unfortunately, the terms ‘forward’ and ‘backward’ have been used in security
definitions somewhat ambiguously and are still controversial [28, 1]. The cryptographic community
has long time used the term ‘forward security’ loosely to mean the protection capability of past traffic
even with disclose of a current secret in many public key designs, in order to mitigate the damage
from the long-term secret key exposure (e.g., key exchange protocols, public key encryption and digital
signatures). However, the opposite concept, ‘backward security’, is rarely used explicitly (though some
key-evolving signatures introduce an external trusted authority to achieve such a security property;
e.g., see [22]). This might be one reason for the lack of efforts in establishing agreed-upon concrete
definitions for both security notions. Note however that these definitions are exactly opposite to the
verbatim meaning of the words and also to our intuition. They are awkward in particular when used
in conjunction with untraceability. We will thus use the terms ‘forward’ and ‘backward’ untraceability

3



literally as defined below (more general and formal definitions on various untraceability notions are
provided in Appendix A).

Backward and forward untraceability are concerning the indistinguishability of past and future
interactions of a tag with knowledge of the current internal state of the tag at the time of memory
break-in. Backward untraceability states that even if given all the internal states of a target tag at time
t, the adversary should not be able to identify the target tag’s interactions that occurred at time t′ < t.
That is, it requires that knowledge of a tag’s current internal state should not help identify the tag’s past
interactions. Backward untraceability has been considered as the most important security requirement
in strong RFID authentication, since otherwise the past transcripts of a tag (e.g., from readers’ logs)
may allow tracking of the tag owner’s past behaviors.

On the other hand, to our best knowledge, the opposite concept, forward untraceability, has not yet
brought explicitly in the research community of RFID security. Forward untraceability can be similarly
defined as requiring that knowledge of a tag’s internal state at time t should not help identify the tag’s
interactions that occurred at time t′ > t. In fact, not much attention has been paid to this security
notion, since it is obvious that there exists no way (without the help of some external trusted authority)
to maintain the future security once the current secret is exposed. The only thing we can do is to detect
key compromise a.s.a.p. and to replace the exposed key with a fresh one to protect future transactions.
However, this may not be easy in RFID systems; it is almost impossible to detect compromise of a tag
secret and the tag secret may not be manageable by the tag owner.

Obviously, perfect forward untraceability makes no sense, since the adversary ia able to trace the
target tag at least during the authentication immediately following a compromise of the tag secret.
Thus the minimum restriction that may be imposed to achieve forward untraceability would be such
that there should exist some non-empty gap between the time of memory break-in and the attack
time in which the adversary could not hear the interactions (see Appendix for more details). Forward
untraceability is thus harder to achieve than backward untraceability in general, in particular under the
very constrained environment such as RFID tags. Nevertheless, we note that forward untraceability is
never less important than backward untraceability in RFID systems. There may exist some situations
in which forward untraceability is even more important.

Both security requirements will be equally important in fighting against the universal surveillance
threat by some powerful organizations (such as intelligence agencies) capable of collecting a huge amount
of interaction logs (legally or illegally) almost without limitation in time and coverage. On the other
hand, in the case of target tracing, we may not need such a power. It suffices to somehow steal the tag
secret attached to a particular target’s always-carry-on item and collect interaction logs from the target’s
frequently visiting places to trace the future behaviors of the particular target. Such a target tracing
is trivial without forward untraceability. An even catastrophic scenario without forward untraceability
would be such a case that tag secrets are leaked at some point of tag deployment or during the stay
in supply chains. Then, all such tags could be traced afterwards. We thus raise a strong motivation
to the need of forward untraceability in RFID protocol designs (even if not perfect), in addition to
the well-recognized backward untraceability. This property is also closely related to the problem of
ownership transfer of tags as we will see in Section 4.

2.3 Previous Work

There have been proposed a number of RFID security protocols in the literature [30, 25, 17, 24, 12, 13, 6,
8, 21, 19, 23]. They can be classified into two broad classes; a class of protocols trying to enhance privacy
and security in RFID systems without using standard cryptographic primitives, e.g., [17, 24, 13, 19],
and a class of protocols relying on symmetric-key primitives such as block ciphers and hash functions,
e.g., [30, 25, 24, 12, 6, 8, 21, 23]. The former proposals aim at finding some security enhancements
best achievable and easy to implement under the current hardware and functionality of RFID tags
(e.g., EPC UHF Gen2 tags) but they still have a number of practical issues to be addressed for actual
implementations and not so easy to implement in the current standard tags either. On the other hand,
the latter protocols assume enhanced tags with built-in hardware circuits for a symmetric primitive and
pursue stronger security under still resource-constrained environments. There also exist some work on
optimized design and implementation of block ciphers for low-cost RFID tags, e.g., [10, 20].

We do not survey previous work in detail, but refer the reader to, e.g., [5, 2, 15, 14]. We briefly
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examine the Ohkubo-Suzuki-Kinoshita (OSK, for short) protocol [25, 6] however, as it is most relevant
to and the starting point of our proposed protocol. The basic idea of the scheme is to use a one-way key
chain to evolve a tag secret in response to every query request. Then, only the backend database can
identify the tag since it is the only other party with knowledge of the initial tag secret for the one-way
key chain. More specifically, a tag Ti is initialized with a random secret si and, whenever queried, emits
ri = h(0, si) and evolves the tag secret si as si ← h(1, si), where h is a one-way function. If the backend
server keeps a key chain of length m for each tag Ti, i.e., {rk

i }m−1
k=0 , where rj

i = h(0, sj
i ), sj

i = h(1, sj−1
i )

and s0
i = si, then a tag can be identified just by searching the database for each query response ri.

Once the tag Ti is identified, the backend server updates the precomputed key chain so that it now
contains m key chain values starting from the verified tag secret si. Thus the parameter m specifies
the maximum number of authentication failures allowable between two valid sessions. Actually, this
protocol should be modified into a challenge-response type to get resistance against replay attacks and
there may exist more efficient time-memory tradeoffs to enhance the efficiency of the backend server
(see [6, 4]). It is easy to see that this protocol is backward untraceable due to the tag secret evolution
through a one-way key chain.

3 The Proposed Authentication Protocol

3.1 Design Rationale

Our proposed protocol starts with the simple OSK protocol and augments it with mutual authenti-
cation and further protection capability in view of forward untraceability, thus making the resulting
protocol immune against both the forward and the backward tracking attacks. First note that the
OSK protocol achieves backward untraceability by updating a tag secret deterministically in response
to every authentication request. The backend database then maintains a key chain of length m evolved
from the tag secret of the last successful authentication, so that desynchronization up to m times can
be resolved within this key chain.

The basic idea to enhance the protocol with forward untraceability is to refresh the tag secret
simultaneously within both the tag and the central database, whenever the authentication is completed
successfully, using the authentic random numbers exchanged during the protocol execution. Note that
we use the term update to mean deterministic evolution of tag secrets while refresh to mean probabilistic
evolution. That is, in every authentication session, the tag secret is evolved using a one-way key chain
in two different ways; If the authentication succeeds, then both the tag and the database refresh the tag
secret probabilistically using the exchanged random numbers, while, if the protocol fails anyway, the tag
updates its secret deterministically as in the OSK protocol. Then, the resulting protocol would be made
forward untraceable from the moment that an adversary is missing even one successful authentication
session after compromising the tag secret.

One problem still remains in the above approach. If the adversary executes the protocol with a tag
immediately after compromising the tag secret (she can do it successfully since she knows the tag secret),
then the tag secret will be permanently desynchromized in the tag and the backend database, and the
tag can be read only by the adversary.2 This is because the tag refreshes its secret probabilistically
using the randomness only shared with the adversary. To repair this problem, we introduce another
one-way key chain maintained by the database and verified by the tag. The tag then refreshes its secret
only if a received key chain value is verified. Note that this key chain is used in reverse order, contrary
to the key chain for tag secret update, so we call it as a backward key chain while the latter as a forward
key chain. We thus use the forward key chain for tag secret evolution and the backward key chain for
server validation which triggers a refresh of the tag secret.

Finally, we note that there may still exist some subtle desynchronization problem in the case that
the protocol message in the third flow is lost during transmission due to either unreliable medium or
denial-of-service attacks by an adversary. The loss of the last protocol message in transit again results
in permanent desynchronization of the tag secret, since then the tag will update the tag secret while the
server will refresh it. We solve this problem by making the database keep two key chains of length m of
relevant secrets, one based on the old secret and the other based the new secret, and examine both key

2This very property can be used to transfer tag ownership from the database to a consumer, as we can see later.
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Figure 2: The proposed protocol

chains in the next authentication. The problem can then be resolved, since the tag secret will belong
to one of the two key chains, depending on whether or not the last protocol message arrives correctly.

3.2 Protocol Description

3.2.1 Parameters.

The following parameters are used in the proposed protocol.

• m : The maximum number of allowable authentication failures between two valid sessions. If the
protocol fails more than this threshold after the last successful interaction with the server (via
an honest reader), then the tag stops evolving its secret and keeps using the last updated secret
until the next successful authentication.

• n : The length of the backward key chain used for server authentication. This value can be set
around the maximum number of successful authentications (not counting failed sessions) expected
during the tag lifetime.

• ` : The bit-length of a tag secret.

• `1 : The bit-length of random challenges and responses.

• `2 : The bit-length of the tag secret transmitted in clear to help the backend server to identify
the tag secret in its database. This value may depend on the tag population managed by the
server (e.g., `2 ' log2 2mN , where N is the maximum expected number of tags). The tag secret
of length ` = `2 + `′ thus has the effective key length of `′ bits.

Pseudorandom Functions. Our protocol makes use of three pseudorandom functions f, g and h, all
of which may be constructed from a single lightweight block cipher as can be seen later. We denote by
g(x)n n-times applications of the function g on x :

• f : {0, 1}` × {0, 1}2`1 → {0, 1}2`1 : A pseudorandom function to generate authenticators.

• g : {0, 1}` → {0, 1}` : A pseudorandom function to build the forward key chain used to evolve tag
secrets.

• h : {0, 1}2`1 → {0, 1}2`1 : A pseudorandom function to build the backward key chain used to
authenticate the server.
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Tag & Database Initialization. Each tag Ti is initialized by the backend database server as follows:

• The server chooses a random secret si (say, of 128 bits) for the tag Ti, evaluates (m−1) evolutions
of si, s0

i = si and sj
i = g(sj−1

i ) for 1 ≤ j ≤ m − 1, and extracts the key identifiers tji for sj
i as

tji = ext(sj
i , `2) for 0 ≤ j ≤ m − 1, where ext(x, `) denotes a simple extract function returning `

bits out of x (e.g., x mod 2`).

• The server also chooses a random ui ∈ [0, 22`1) for each tag Ti and computes a key chain of length
n, {wj

i }n−1
j=0 , such that wn

i = ui and wj
i = h(wj+1

i ) for 0 ≤ j < n. This key chain is used in reverse
order to authenticate the server and to trigger a refresh of a tag secret.

• The tag then stores the pair of (tag secret, server validator) 〈si, wi,T 〉 and initializes the failure
counter ci as ci = 0, where wi,T = w0

i .

• The server makes two entries for Ti, Dold[i] (initially empty) and Dnew[i], in its database and stores
the Ti’s identification data 〈si, {tji}m−1

j=0 , ui, ni, wi,T , wi,S〉 in the entry Dnew[i], where wi,S = w1
i

and ni = n. Here, the variable ni maintains the depth of the current wi,S in the key chain (i.e.,
wi,S = h(ui)ni). Note that wi,T = h(wi,S).

Authentication Procedures.

1. The reader picks r1 ∈R [0, 2`1) and sends it to the tag.

2. The tag chooses r2 ∈R [0, 2`1), computes ti = ext(si, `2) and σ1 = ext(f(si, r1 ‖ r2), `1) and sends
〈ti, r2, σ1〉 to the reader.

3. The reader then queries 〈ti, r1, r2, σ1〉 to the database server.

4. The server searches its database to find an entry containing the received key identifier ti. If no
match is found, the server responds with σ2 =⊥ (denoting ‘failure’) and stops. Suppose that
a match of ti = tji for some j is found in one of Ti’s entries, Dold[i] or Dnew[i], containing
〈si, {tki }m−1

k=0 , ui, ni, wi,T , wi,S〉. Then, the server computes the tag secret corresponding to tji by
s′i = g(si)j and checks that ext(f(s′i, r1 ‖ r2), `1) = σ1. If the check fails, the server stops with
output σ2 =⊥. If the check succeeds, the server sends the response σ2 to the reader, where
σ2 = f(s′i, (r2 ‖ r1))⊕ wi,S . The server then updates the two entries, Dold[i] and Dnew[i], of the
identified tag Ti as follows:

1) The server moves the set of data found in the identified entry to Dold[i] after updating the
key identifiers tji ’s according to the verified tag secret s′i; t̂ki = tj+k+1

i for 0 ≤ k ≤ m− j − 1,
ŝi = g(s′i) and t̂ki = ext(g(ŝi)k−m+j , `2) for m − j ≤ k ≤ m − 1. Thus, we have Dold[i] =
〈ŝi, {t̂ki }m−1

k=0 , ui, ni, wi,T , wi,S〉.
2) The server then generates new data for Dnew[i] as follows: si ← g(si ⊕ (wi,S ‖ r1 ‖ r2)),

tji = ext(g(si)j , `2) for 0 ≤ j ≤ m − 1, ni ← ni − 1, wi,T ← wi,S and wi,S = h(ui)ni and
stores the set of data 〈si, {tki }m−1

k=0 , ui, ni, wi,T , wi,S〉 in the entry Dnew[i].

5. If σ2 =⊥, the reader stops. Otherwise, it forwards the received σ2 to the tag.

6. The tag computes w′i,S = σ2⊕f(si, r2 ‖ r1) and checks that h(w′i,S) = wi,T . If the check succeeds,
then the tag sets ci = 0 and updates its secret and validator pair 〈si, wi,T 〉 as wi,T ← w′i,S and
si ← g(si ⊕ (wi,T ‖ r1 ‖ r2)). If the check fails, the tag increases the failure counter ci ← ci + 1
and, if ci < m, updates its secret by si ← g(si), and, if ci ≥ m, does nothing, keeping its current
state unchanged.

Construction of Functions f, g and h. We may use a block cipher as a building block for con-
struction of the functions f, g and h. Note that block ciphers usually allow more compact hardware
implementations than hash functions and that we only need to implement the encryption function for
our purpose. In particular, it was shown that a lightweight block cipher deigned for resource-constrained
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environments could be implemented using just a few thousand (NAND-equivalent) gates [20] (see also
[10]).

Suppose that we have chosen parameters of l = 128, l1 = l2 = 32 and that we have a 64-bit block
cipher with 128-bit key length, denoted by E : {0, 1}128 ×{0, 1}64 → {0, 1}64. The function f can then
be simply the encryption function E, so f(k, x) = Ek(x). The one-way function g may be constructed
by g(k) = f(k, c0) ‖ f(k, c1) for some 64-bit constants c0 and c1. Similarly, we may construct the
half-sized key chain function h by h(k) = f(k ‖ k, c2) for another 64-bit constant c2. If the encryption
function is secure, then inversion of functions g and h would require an exhaustive search for the keys
involved. Also note that even if 32 bits of k are disclosed, there remain large enough secret bits so that
an exhaustive search is still infeasible.

3.3 Security and Privacy

It is easy to see that the proposed protocol works correctly if both the tag and the backend server behave
honestly. We show in this section that our protocol is secure, and backward and forward untraceable
under some reasonable assumption. For the security analysis, we assume that the functions f, g and h
are one-way and behave like random functions.

Attacks on tag authentication. We first consider possible attacks by the adversary impersonating a
tag. The aim of the adversary in these attacks in the context of authentication is to make the backend
database accept a fake tag as valid. First note that the tag secret constantly evolves in every query
request from readers and thus past tag responses may be assumed uniformly distributed irrespective
of the queries requested (thus of no use for future attacks). Thus a fake tag T̃i without knowledge of
a valid secret si has no better strategy than to reply with random t̃i ∈ [0, 2`2) and σ̃1 ∈ [0, 2`1). Let
N be the total number of tags managed by the backend server. Then the probability of this reply
being accepted by the server is at most 2mN/2`1+`2 for each query response, since for a random tag
identifier t̃i there exist at most 2mN/2`2 matching tag identifiers in the database and for each matching
tag identifier the probability of a random σ̃1 being verified is 1/2`1 . Thus, our protocol achieves tag
authentication with a cheating probability of at most 2mN/2`1+`2 .

Attacks on reader authentication. We next consider possible attacks by the adversary imperson-
ating a legitimate reader. The aim of the adversary in these attacks in the context of authentication
is to make an honest tag accept the adversary as a legitimate reader. Possible results of a successful
attack may include tracking a tag or illegal modification of tag’s internal states. A fake reader without
knowledge of valid secrets (si, wi,S) associated with an honest tag Ti again has no better strategy than
to send a random σ̃2 in the final protocol flow. The probability of such a response being accepted by
the tag is negligible (around 1/22`1 on average).

We now consider an adversary tampering with a tag Ti at some point. Suppose that the adversary
somehow obtains Ti’s secrets (si, wi,T ) at time t. Obviously, this information becomes useless if Ti

has completed even one valid session (with a legitimate reader) at time t′ > t which the adversary
could not eavesdrop, since then the tag secret si would have been refreshed with a random number of
length 2`1 unknown to the adversary. We thus only consider the case of the adversary attacking Ti

immediately after compromising the tag secrets. Even in this case, the adversary cannot successfully
cheat Ti without knowledge of the corresponding server validator wi,S . The only way to get a live
value of wi,S would be to intercept a valid σ2 (sent by a legitimate reader) and then to invalidate it
immediately so that it cannot be accepted by Ti. Then the adversary can recover a live value of wi,S

from σ2 which can be used later to trigger a refresh of the tag secret by Ti. This is the only potential
threat identified but inevitable in our protocol. However, the feasibility of such an attack requiring
instant intercept-then-invalidate operation over the air is highly questionable for proximate wireless
transmissions in typical RFID tag environments.

Other attacks. Our protocol has strong resistance against Denial-of-Service (DoS) attacks on the last
protocol message. Any alteration of this message may cause desynchronization of tag secrets in the
tag and the backend server, but such a desynchronization problem can be resolved by dual copies of
tag state information maintained in the server. Authentication failures more than the threshold m just
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cause the tag secret to remain static, which may break untraceability, but the tag secret is restored to
a fresh after a secure reading of the tag.

Tag cloning is also ineffective in our protocol. Cloned tags are made useless as soon as tag secrets
of the original tags are refreshed by a legitimate reading.

Forward and backward untraceability. From the above discussions, it is obvious that our protocol
is backward untraceable and also forward untraceable under a reasonable assumption. Tag secrets at
time t does not help identify tag interactions executed at time t′ < t, as far as the one-wayness of the
function g remains intractable, thus resulting in backwrad untraceability.

Forward untraceability is also provided to some extent under the natural assumption that the ad-
versary compromising a tag cannot eavesdrop all the future interactions of the tag. The tag secret
is refreshed upon every successful interaction with the server and thus a compromised tag becomes
untraceable from the moment that the adversary misses even a single valid session of the tag. That is,
forward untraceability of a tag, even if broken at any point during its lifetime, can be restored just by
a single secure reading of the tag. However, we should be careful for the potential threat to this nice
property as explained above (i.e., a possibility of intercept-then-invalidate of wireless signals over the
air), since its realization would result in complete loss of control over the tag.

3.4 Efficiency Considerations

Suppose that the function f is implemented as the encryption function of a 64-bit block cipher sup-
porting 128-bit keys and the functions g and h are derived from f as explained at the end of Section
3.2. Also suppose that we choose the parameters ` = 128 and `1 = `2 = 32. Each tag Ti then needs
to store 196 bits of rewritable data (a 128-bit si and a 64-bit wi,T ) and exchange 192 bits of data per
session (send 96 bits and receive 96 bits). A tag requires 5 blocks of encryption for each session.

Consider an RFID system with N = 220 tags. The length m of precomputed key chains stored in the
backend server controls untraceability between two refreshes and determines the storage requirement
of the server; it need not be chosen too large, since the tag owner can refresh the tag secrets whenever
necessary (e.g., m = 64). The server requires at least (m + 3) invocations of the function g for each
successful query from the reader to update the precomputation table entries. The length n for the
backward key chain determines the number of valid authentications during the whole tag lifetime and
thus may be chosen quite large for long-lived tags, say n = 220. The server requires ni invocations of the
function h to update the current server validator wi,S in each successful authentication. This workload
however can be reduced to a fixed c invocations if the server precomputes (say, at every midnight) and
stores the c-th upward value in addition, assuming that at most c legitimate readings of the tag in a
day are sufficient (e.g., c = 100). The server then requires storage of just around 620 Mbytes for tag
identification data (i.e., Dold[i]’s and Dnew[i]’s) and less than 250 evaluations of the encryption function
for each successful query on average. Note that the storage requirement of the server never exceeds
tens of gigabytes (still easily available even in potable devices such as PDAs) even if we take a larger
value of m and store full values in both forward and backward key chains for computational efficiency
and robustness against DoS attacks.

4 Ownership Transfer, Delegation and Anti-cloning

4.1 Ownership Transfer

Ownership of RFID tags may be changed frequently during their lifetime. For example, tags are
initially created and attached to objects by manufacturers and tagged objects are then handed over to
retailers, and finally consumers buy tagged objects in shopping malls. The owner of a tagged object
may also transfer its ownership to another party (e.g., by buying an object and giving it to his friend
as a birthday present, or by selling or swapping used objects via a garage sale or in a swap meet).
Ownership transfer of a tag means transfer of authorization to read the tag. Thus, such an ownership
transfer must guarantee that once ownership is transferred to another party, the old owner should not
be able to read the tag any more.
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The problem of ownership transfer seems not extensively studied in the RFID security community
yet, but we argue that this problem is in fact in the core of the RFID privacy problem. Suppose that
Alice bought an tagged item from a shopping mall. The ideal consequence of this transaction would
be such that Alice should take over the complete control of the tag via her portable RFID reader3 and
then even the backend server of the shopping mall should not be able to trace the sold tag any longer.
Once receiving all the necessary information to control the tag, the new owner’s reader can now take
the place of the server. Obviously, this problem is closely related to forward untraceability, since the
backend server still maintains all the secret information on the tag, which should be made useless (at
least in tracing the tag) after the sales transaction. This requirement is more obvious in the case of
ownership transfer between users.

It is rather simple to transfer tag ownership in our protocol. Suppose that Alice wants to take
over a tag Ti from the database server since she bought the tagged item. Alice then uses her mobile
reader to securely communicate with the server via the checkout reader and receives all the relevant
information from the server via the secured channel. The information received will certainly include
the Ti’s table entries, Dold[i] and Dnew[i], and the tag ID. Alice can then take over the ownership of the
tag simply by reading the tag via her mobile reader. This will make the tag refresh its secret based on
the randomness shared only with Alice’s mobile reader and thus no one else can read the tag from the
moment. Note that no eavesdropper, except the backend server, can refresh the tag secret, since the
backward key chain needed for this operation is only known to Alice’s reader (and the backend server;
thus tag reading may be done outside the communication range of the checkout reader for safety).

We note that no previous work explicitly deals with this kind of perfect ownership transfer between
users. Molnar et al.’s pseudonym protocol [23] is the only one we found that deals with the problem
of ownership transfer explicitly. However, their method for ownership transfer is not complete in the
sense that the backend server still maintains all the control power of the tag. Only partial information
is delivered to a reader, so that the reader can read the tag by some predetermined number of times
without on-line connectivity to the server. Thus, strictly speaking, their scheme corresponds to time-
limited access delegation rather than ownership transfer. Contrary to this, ownership transfer in our
protocol is perfect. Ownership transfer can be carried out every time tagged objects change hands
during their lifetime.

4.2 Access Delegation and Anti-cloning

In most RFID authentication scenarios, an RFID reader tends to act as a dumb relay, just passing
protocol messages back and forth between a tag and a central database server. This may overburden
the server in both computing and communication complexities. Availability may also be a big issue;
on-line access to the database server should be always available in a reliable way but readers may have
intermittent connectivity for various reasons. It is however not easy to distribute the functionality of
the database into a large number of readers scattered over the RFID infrastructure. Readers may not be
always trustworthy and consistency of the database is hard to manage in such a large scale distribution.

Time-limited access delegation may be useful in such a case. We may delegate access to a set of
tags to a particular reader, so that the reader can read the tags in a limited time span without on-line
connectivity to the server. After the specified time span, however, the reader’s access to the tags should
expire and thus the reader should not be able to read the tags any more without interaction with the
server. Molnar et al. proposed such a time-limited access delegation in their pseudonym protocol [23].

In our protocol, we propose a different approach to time-limited access delegation. Due to the prob-
abilistic nature of tag secret evolution, it is not possible in our protocol to delegate access authorization
that automatically expires after a specified time limit. However, our protocol has such a nice feature
that only the server can refresh tag secrets using the backward key chain for server validators. We
may thus deliver only two forward key chains for the tag secret and the tag ID to the reader but not
the backward key chain for server validation. Then, the reader may identify the tag from the first two
protocol flows but cannot respond with a valid answer in the third flow. We note that our protocol
works correctly even if the third protocol message is suppressed (the reader may send an arbitrary

3Commodity mobile RFID readers will be available soon in various mobile devices, such as mobile handsets and PDAs.
In particular, mobile phones with built-in RFID readers will constitute the majority of mobile readers. Mobile phones
could also be the best place to host RFID proxy for various personal belongings (e.g., see [26, 18]).
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dummy answer as σ2 for the tag to proceed without waiting until the timeout). This makes the tag
secret evolved deterministically and eventually remain static after m readings. Thus the server never
loses its control over the tag. Though untraceability may be broken by more than m readings, this may
not be a problem, since untraceability is in fact not much necessary before tagged objects are handed
over to consumers.

A remaining issue in the above scenario is how to cancel access authorization given to the reader.
The solution is fairly simple. We can just read the tag as before using a reader on-line connected to
the server to refresh the tag secret, so that the access delegated reader cannot read the tag any more.
This method of distributed processing can be effectively used to manage a large volume of tags as well.
For example, suppose the case of warehouse inventory of tagged objects. The database server makes a
copy of its database only containing two forward key chains for the tag secret and the tag ID for each
tag and delivers it to a local database or a set of readers used for inventorying the warehouse (even
hand-held readers (say, PDAs) may have storage of several or tens of gigabytes, so they can easily hold
a copy of the database). The distributed local databases can be made useless at any time by scanning
the tags using a reader on-line connected to the central server as before.

The authorized refreshability of tag secrets in our protocol may also be used to thwart tag cloning.
Suppose that a warehouse employee in the above example steals a set of tag secrets from the local
database and reproduces cloned tags. These cloned tags however can be made easily obsolete by
refreshing tag secrets in both the original tags and the central database, say, before tagged objects leave
the warehouse. This time, we may need two readings in order to wipe out old tag secrets in the central
database as well. Note that tag refresh cannot be done by the malicious employee, instead, to make
the original tags obsolete, since he is not given any value of the backward key chain.

5 Conclusion

We have introduced the concept of forward untraceability and its importance in designing RFID security
protocols. It has also been shown that forward untraceability is the key ingredient for perfect ownership
transfer of RFID tags. Based on these observations and requirements, we presented a strong and robust
RFID security protocol providing both forward and backward untraceability. As far as we know, our
protocol achieves the strongest possible security in RFID authentication. The proposed protocol also
has several nice features such as complete ownership transfer between users and distributed processing
capability of the central database maintaining tag identification information. Though our protocol may
not be easy to implement in low-end RFID tags under the current standard and technology, we expect
that it could be used right away in high-end tags for stronger security and probably low-end tags as
well in the near future as hardware technology advances.
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A The Security Model for Untraceability

Not much work has been done yet on formal security models for RFID security protocols, though a
number of proposals based on varying assumptions have been proposed and analyzed in the literature.
Juels have proposed a somewhat weak but realistic security model specific to his pseudonym protocol
[13]. On the other hand, Avoine introduced a rather strong cryptographic model to define the strong
privacy notion of untraceability in RFID protocols [2]. Here, we would like to take a step toward
a generic security model that can cover weak to strongest possible security in RFID protocols. Our
model closely follows Avoine’s model but makes it more general and flexible by incorporating various
possible restrictions existing in RFID systems. We primarily focus on the strongest privacy notion of
untraceability, in particular, forward and backward untraceability, but it would be rather easy to extend
it to include the general notion of authentication as well.

Oracles. An RFID protocol, P, is formally a probabilistic algorithm that determines how instances
of the principals, a tag T and a reader R, behave in response to inputs sent from their environment.
The inputs may be given by an adversary, A, that may have complete control over the environment.
The adversary is a probabilistic algorithm with a distinguished query tape. Queries written on this
tape are answered by principals according to P. Each of the principals can run several instances of P.
We denote a tag instance at time i by πi

T and a reader instance at time j by πj
R. The adversary A is

allowed to have access to the following oracles:

• Query(πi
T ,m1,m3): this query models A actively querying T . It sends a request m1 to T through

the forward channel and subsequently responds with the message m3 after having received an
answer from T .

• Send(πj
R,m2): this query models A actively querying R. It sends the message m2 to R through

the backward channel and receives an answer from R.

• Execute(πi
T , πj

R): this query models A passively eavesdropping on the communication channels
between T and R. It executes an instance of P between T and R and obtains the messages
exchanged on both the forward and the backward channels.

• Execute∗(πi
T , πj

R): this query models A passively eavesdropping only on the forward channel. It
executes an instance of P between T and R, but only obtains the messages exchanged on the
forward channel. This oracle may be used to model the secure backward channel assumption in
some protocols.

• Reveal(πi
T ): this query models A obtaining the content of T ’s memory channel. This query is only

allowed during the time interval of A’s training phase. Other queries can still be used even after
the reveal query (possibly under some restriction).

13



For simplicity, let Q,S,E,E∗, and R represent, respectively, the oracles Query, Send, Execute, Execute∗

and Reveal. Note that the adversary is passive when using the oracles E and E∗, while it is active when
using the oracles Q and S. In fact, the oracle E may be simulated using the oracles Q and S by the
man-in-the-middle attack, but the reverse is not true.

Attack Models. The adversary attacking untraceability may use the above oracles in arbitrary manner
according to its strategy, except the reveal oracle. The aim of the adversary is to distinguish a particular
tag or a set of tags from others in different instances of the protocol (a more formal definition will be
given below). The adversary’s ability to achieve this aim can be characterized by the oracles to which
the adversary is given access. We can thus classify the attack models according to the set of oracles
available to the adversary. For example, the QSE model and the QSER model may be most intersting
among others.

In typical RFID system environments, however, it may be too strong to allow unrestricted access
to the oracles provided. Typically, tags and readers operate only at short communication range and
for a relatively short period of time. Furthermore, RFID tags may be assumed in many cases highly
mobile and thus hard to trace physically (otherwise, we do not need to worry about privacy infringement
due to the traceability of tagged items). Therefore, it may not be unrealistic in practice to put some
restrictions to the adversary’s oracle access in terms of access time and frequency. We thus consider
two access models, namely the universal or unrestricted access (UA) model and the restricted access (RA)
model. Access restriction in the RA model is hard to define generically and thus a specific RA model
should include a description on the imposed restrictions. For example, natural restrictions that could
be imposed on the adversary may include some limitation in the number of successive queries to target
tags and some limitation in the number of successive valid sessions that can be read by the adversary
(e.g., as in the minimalist security model [13]).

We can thus talk of untraceability under the combined model of available oracles and access restric-
tion. For example, we can say that a given protocol is untraceable under the UA-QSE model, meaning
that the protocol is untraceable against any adversary who can interact with target tags and readers
and eavesdrop interactions between target tags and legitimate readers at any time it wishes.

Attack Games. Let ωi(T ) be the result of the application of an oracle Q,E,E∗, or R on a tag T , where
ωi(T ) ∈ {Query(πi

T , ∗), Execute(πi
T , ∗), Execute∗(πi

T , ∗), Reveal(πi
T )} (note that tags are involved in all

oracles, except the Send oracle). A tag interaction is defined as a set of oracle execution results on the
same tag (identified by physical tracing or through an active query). More precisely, an interaction is
defined by ΩI(T ) = {ωi(T )|i ∈ I} ∪ {Send(πi

∗, ∗)|i ∈ J}, where I, J ⊂ N. The length of an interaction
ΩI(T ) is equal to |I| by definition. We use the notation I < J for I, J ⊂ N to denote that numbers in
I precede those in J ; i.e., I = [a, b], J = [c, d] such that a ≤ b < c ≤ d.

Untraceability can be formally defined by a game being played between a Challenger and an ad-
versary A, where the adversary is allowed to interact with given oracles. The game begins with the
Challenger randomly choosing a target tag T and providing it to the adversary A. After having ex-
perimented with the target T using a set of oracles O provided (possibly including the reveal oracle R)
under some access restriction R and thus obtaining an interaction ΩI(T ) over its chosen interval I, the
adversary A requests challenge tags from the Challenger, which then provides two tags T0 and T1, one
of which is T (i.e., Tb = T for some hidden bit b ∈ {0, 1}). The adversary continues experimenting with
the two tags as before, except that the reveal oracle, if provided, is not allowed to query in this stage,
and thus obtains two interactions ΩI0(T0) and ΩI1(T1), where the intervals I0 and I1 should not overlap
with the interval I. Finally, A outputs her best guess b′ based on the experiments. If the probability
of b = b′ is negligible for every I0 and I1 and for every A, then we say that the protocol is untraceable
under the R-O model.

More formally: Let O be the set of oracles available to the adversary, where O ∈ {E∗, E, QS, QSE∗,
QSE, QSER}, and let R be the (description of) access restriction imposed on the oracles, where R may
be empty. Let O′ be the same as O except that O′ = QSE in the case of O = QSER. Let OR be the set
of oracles O under the access restriction R. That is, when a query is received, OR first checks the given
access restriction R and returns an answer only if it satisfies the restriction. We use Oracle to simulate
the set of oracles to which the adversary has access. More precisely, Oracle takes as inputs a tag T and
a time interval I, makes calls to the oracles of OR or OR′ and sends back an interaction ΩI(T ). Let
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`ref and `ch be security parameters controling the length of interactions that the adversary can execute
during the training and the cracking phases of the experiment. We first define a general experiment
for untraceability, the strongest privacy notion, and then define forward and backward untraceability
based on this experiment.

1. The Challenger randomly picks a target tag T (among all possible random tags) and gives it to
the adversary A, together with the permission of oracle accesses to OR.

2. A chooses I and calls Oracle(T, I,OR}) where |I| ≤ `ref , and gets ΩI(T ).

3. A requests the Challenger to provide challenge tags and receives T0 and T1 such that Tb = T for
a hidden bit b ∈ {0, 1}.

4. A chooses I0 and I1 such that |I0|, |I1| ≤ `ch and (I0 ∪ I1) ∩ I = Ø, calls Oracle(T0, I0,OR′) and
Oracle(T1, I1,OR′), and gets ΩI0(T0) and ΩI1(T1).

5. A finally outputs her best guess b′.

Note that the reveal oracle R, if provided, can only be queried during the training phase (step 2)
but never in the cracking phase (step 4). The advantage of A for a given protocol P under the R-O
model is defined by AdvUNTP (AOR) = Pr(b′ = b)− 1

2 , where the probability is taken over the coin tosses
of A and Challenger and over the choice of random intervals and random tags. In general, we say that
P is O-untraceable under the restriction R if this advantage is negligible w.r.t the security parameters
`ref and `ch. We simply say that P is untraceable if R = ∅ (the UA model) and O = QSE, since this is
the best achievable untraceability notion without the reveal oracle.

When the reveal query is allowed (i.e., if O = QSER), we make a further distinction according to
the additional restriction on the choice of experiment time intervals. If I, I0 and I1 are chosen such
that I > I0 and I > I1, then the protocol is said to be backward untraceable under the restriction R
(simply backward untraceable if R = ∅). If the restriction is such that I < I0 and I < I1, then we say
that the protocol is forward untraceable under the restriction R. Note that forward untraceability under
the UA model makes no sense, since once obtaining the tag secret by the reveal query, the adversary
takes all the power of the tag itself and thus can trace the target tag at least during the authentication
immediately following the attack. Thus, the minimum restriction for forward untraceability is such that
there should exists some non-empty gap not accessable by the adversary between the time of a reveal
query and the attack time. That is, there should exist some non-empty intervals J0 and J1 such that
I < J0 < I0 and I < J1 < I1. Forward untraceability under this restriction would be the best one we
can achieve in any RFID authentication protocol.

15


