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Abstract—Cloning of RFID tags may lead to considerable
financial losses and worse reputation in many commercial ap-
plications, while being attractive for adversaries. One way to
address tag cloning is to use the visibility that RFID traces
provide to detect cloned tags as soon as they enter the system.
However, RFID traces always represent historic events without
giving certainty where the traced objects currently really are.
Furthermore, imperfect read rates can lead to missing reads.
As a result, the visibility is not always perfect, which makes
detection of cloned tags harder and less reliable. This paper
presents a series of probabilistic techniques to enable reliable
detection of cloned tags in cases where the visibility is incomplete.
Our hypothesis is that the events generated by cloned tags cause
rare or abnormal events that can be detected when the process
that generates the legitimate events is understood. The presented
techniques are studied in a comprehensive simulation study of
a real-world pharmaceutical supply chain. Our findings suggest
that reliable detection of cloned tags is possible if missing reads
are addressed and the supply chain is precisely modeled.

I. INTRODUCTION

Radio Frequency Identification (RFID) systems are used to
identify physical objects in many applications where cloning
of tags could lead to considerable financial losses and harm.
Examples of such applications include access control [1],
ticketing [2], payment [3], and anti-counterfeiting in supply
chains [4]. The conventional approach to secure RFID systems
against tag cloning is to use cryptographic tags that enable tag
authentication and make tag cloning considerable harder [5].
The less conventional approach to address tag cloning is to
use the visibility that RFID provides to detect cloned tags.

Visibility enables location-based product authentication that
is a technical anti-counterfeiting measure that brand-owners
can use in their fight against product counterfeiting. Today, it
is relatively easy to produce visual copies of various kinds of
trademarked and branded products. Selling these counterfeit
goods as originals to the licit supply chains can result into
high illegal profits for the illicit players. Overall, counterfeiting
constitutes a large problem for legally run businesses and
governments; for example, the European Customs alone seize
up to a hundred million counterfeit articles every year [6].

An important problem behind location-based product au-
thentication is that RFID traces always represent historic
events without giving certainty where the traced objects cur-
rently really are. We define an RFID trace as the set of events
relating to one tagged object that can be retrieved from a
tracing system, such as the EPC network [22]. Furthermore,
the existing RFID systems are still somewhat prone to read

errors. As a result, the visibility that RFID systems provide
is not always perfect, which makes detection of cloned tags
harder and less reliable. We propose to address the problem of
incomplete traces with probabilistic analysis techniques whose
goal is to automatically detect cloned tags in a reliable way
from a large amount of data. We make use of the fact that
events generated by cloned tags appear in traces of genuine
products. Our hypothesis is that the events generated by cloned
tags cause rare or abnormal events that can be detected as
improbable transitions in the supply chain when the process
that generates the legitimate events is understood and modeled.
If this hypothesis is true, it implies that supply chains can be
protected from cloned tags with detective techniques, without
the need for cryptographic tags.

This paper is organized as follows. Section II reviews related
work about uncertainty in RFID traces and techniques to
address tag cloning attacks. In Section III we present the
characteristics of RFID track and trace data, including an
analysis of causes of missing reads. Sections IV and V present
the probabilistic reasoning behind location-based product au-
thentication and the proposed solution method. In Section VI
we evaluate the proposed methods with a simulation study
of a real-world pharmaceutical supply chain. We finish with
discussion and conclusions.

II. RELATED WORK

Various causes of uncertainty in RFID traces have been
discussed in the scientific community. Derakhshan et al. [7]
identified inaccuracy, i.e. missing reads (false negatives) due to
imperfect read rates, as one of the primary factors limiting the
widespread adoption of RFID technology. The authors stated
that the observed real-world read rates are often in the 60-
70% range [8]. However, presenting general numbers for read
rate is misleading since read rate depends on a multitude of
case-specific factors. Case studies in the aerospace industry
[9] show that in addition to missing reads, also processing
delays and problems with aggregation information accuracy
can decrease the tracking information quality.

Examples from real life show that missing reads can be
eliminated in real-world RFID implementations by engineer-
ing solutions in the physical layer. Folcke [10] described a
commercial ”smart cabinet” application where medical devices
(25% of which contained a metal cover) are automatically
identified. After the first deployment, the error rate in iden-
tification was smaller than 1.5 · 10−5 (no errors in 65,000



reads). This high level of reliability was achieved by choosing
the best frequency for that particular application (125 kHz), by
positioning and adjusting the reader antennas, and by choosing
the best tag position on the products.

Researchers in the University of Arkansas measured the read
rates of RFID tags in Electronic Article Surveillance (EAS)
[11]. Overall, the tested UHF tags and readers performed very
well and compared to existing EAS systems, especially for
reading single tags, and displayed a general insensitivity to
tag orientation. When scanning 50 tags passing through a gate,
read rates of 95% and more were observed. Brusey et al. [12]
studied the problems of uncertainty in the true locations of tags
in industrial robotic control application and smart medicine
cabinet application. The authors found that filtering tag reads
over time was effective in reducing both false positive and
false negative reads. Jeffery et al. [14] proposed the first
adaptive smoothing filter for RFID data cleaning generated
by the readers. In another work, the same authors proposed
a data cleaning process for sensor/RFID data to solve missed
reads when scanning multiple products on a shelf [13].

Khoussainova et al. [15] studied how to address uncertainty
in the application layer. As a solution to difficulties in deter-
mining which high-level event has occurred based on the low-
level reads, the authors proposed a probabilistic model that
divides uncertain events into multiple high-level events with
given probabilities. Kelepouris et al. [16] studied the quality
of tracking information in supply chains and discussed the
problem that RFID data does not tell the products’ current
locations without uncertainty. The authors introduced the first
quantitative metric of the quality of product location informa-
tion based on expected utility axiom.

The research community addresses authentication of RFID-
tagged products primarily by trying to make tag cloning
hard using cryptographic tag authentication protocols [5]. The
fundamental difficulties of this research revolve around the
trade-offs between tag cost, level of security, and performance
in terms of reading speed and distance. It is not sure if the
cryptographic solutions will be inexpensive and usable enough
for deployment as barcode replacing RFID tags. Furthermore,
solving key distribution and management in a scalable and
secure way is challenging for large RFID systems.

In addition to cryptographic approaches, various ways to
detect counterfeit products based on track and trace data
have been discussed in the literature. Electronic pedigree(e-
pedigree), where buyers and sellers of the product append the
product’s history document with an event that they sign, is
probably the best-known measure [17]. The major limitation
of e-pedigree is that it does not provide a reliable way of
detecting copied e-pedigree documents. Juels [5] noted that
serial level identification alone without secure verification of
the identities can be a powerful anti counterfeiting tool. Koh et
al. [18] made use of this assumption to secure pharmaceutical
supply chains by proposing an authentication server that
publishes a list of genuine products’ ID numbers. Takagari et
al. [19] proposed some early ideas how to check the validity
of serialized ID numbers. Staake et al. [4] were among the

Fig. 1. Sources of missing reads in RFID systems

first to discuss the potential of track and trace based product
authentication and they point out some problems that occur
when the back-end no longer knows where the genuine subject
is. Mirowski and Hartnett [1] developed a system that detects
cloned RFID tags, or other changes in tag ownership, in an
access control application with intrusion detection methods.

Lehtonen et al. [20] used machine learning techniques to
automatically detect cloned tags from incomplete location
data. The authors applied time-delayed Markov chains and
hidden Markov models (HMM) to classify traces of products
as either clean of cloned tags or corrupted by cloned tags.
Their findings suggested that cloned tags can be best detected
by searching for single unlikely transitions from track and
trace data. This paper uses a similar method, but it is applied
to single events instead of complete traces. Furthermore, this
work includes a method to detect missing read events and
presents a detailed evaluation of the authentication method
based on a real-world supply chain.

III. CHARACTERISTICS OF RFID TRACES

This section summarizes the characteristics of RFID traces
from those parts that are relevant to anti-counterfeiting. In
general, the semantic attributes of events follow a ”What?
When? Where? Why?” -concept. For an anti-counterfeiting
application, the most relevant information of events is captured
by the time and location location attributes. The event time is
simply the time when the event occurred and was captured.
The event data of EPCIS 1.0.1 specification [21] defines
physical and logical reader attributes, a read point attribute,
and a business location attribute. Among these attributes, the
business location is the most suitable for location tracking
since it defines the discrete and unambiguous location where
the object is after the event.

Moreover, RFID events do not always tell the object’s
current location, but where the object has been observed.
As a result, track and trace data includes uncertainty about
the object’s current location. Missing reads contribute to this
location uncertainty and thus decrease the usefulness and value
of track and trace data. The possible causes of missing reads
are analyzed below and summarized in Fig. 1.

Most causes of missing reads can be traced down to the



physical layer. Most importantly, these include i) missing
reads due to too short reading times (the time the tag is
in the reader’s field), ii) collisions in the air interface that
collision detection protocol does not catch, and iii) conductive
materials that absorb radio waves. In addition, when tags
are read using the far-field, the tag might be in a node
where the field strength is close to zero and thus the tag
will not be read. Furthermore, due to normal variance in tag
manufacturing processes, chips and antenna connections have
varying impedances which results into variance in tag read
ranges. It is important to note that bit errors in the data that
is read from the tags do not constitute a source of uncertain
event attribute values because of error detection coding.

In some cases slow or otherwise not optimal code in
the middleware can result into missing reads even when an
antenna has interrogated the tag. The role of the middleware is
to coordinate multiple readers that occupy the same physical
space and to transform raw tag reads into streams of high-
level events for example by filtering, aggregating, and counting
them [21]. In a typical setting, middleware listens to all the
antennas of a reader device inside a loop. If a tag is present in
one antenna’s field whilst the middleware is listening to other
antennas (e.g. reading other tags), the low-level event might
not be captured by the middleware.

Also problems in the application layer can lead to missing
events. For instance, Discovery Services [22] might not be able
to locate events relating to a product with a 100% reliability.

In addition, RFID traces can be plagued by so called
phantom reads where a reader reports a tag that was was not
in its field or did not exist. Phantom reads, however, are not
considered in the remainder of this paper.

IV. LOCATION-BASED PRODUCT AUTHENTICATION

Tracking and tracing enables location-based authentication
[20]. The underlying assumptions are that all genuine products
have a unique ID number and there exists a way to find out
whether a unique ID number is valid or not. This scheme is
not yet secure because an adversary could clone a tag. The
location-based authentication system secures this scheme by
detecting the cloned tags based on their locations.

Detection of cloned products from the track and trace data
is straightforward if the current locations of the products are
precisely known; for instance, if the track and trace data tells
that the product is currently in Switzerland at the same time
when a product with the same ID is scanned in Japan, the
system can conclude that it is probable that the product in
Japan has a cloned tag. However, when the track and trace
data says that the product was observed in Switzerland one
week ago but it does not tell its current location, authentication
becomes harder and false alarms become possible.

We build an automatic location-based authentication system
by evaluating transition probabilities between the events. A
transition probability stands for the probability that a genuine
product makes the transition defined by two events. If the tran-
sition probability is high, the latter event is likely to be gener-
ated by a genuine tag and vice versa. When we denote event i

as Ei, the transition probability Ptr from Ei to a consecutive
event Ei+1 can be presented as P (Ei+1|Ei, Ei−1, ..., E1) (cf.
Fig. 2). As a result, the authentication rule can be formalized
as follows. Event Ei is generated by a genuine product if :

Ptr = P (Ei+1|Ei, Ei−1, ..., E1) > ε (1)

The transition probability of the first event (i = 1) in a
product’s trace can be estimated by introducing a so called
”zero-event”. Like this, the transition probability of the first
event is given by P (E1|E0). By limiting the locations where
this probability is non-zero, the system defines a limited secure
environment where new products are allowed to occur (e.g. a
manufacturer’s packaging line).

Fig. 2. Events and transition probabilities

The location-based authentication problem can be now
solved by building a selective classifier that yields high transi-
tion probabilities for events generated by genuine tags and
low transition probabilities for events generated by cloned
tags. Using the Bayes’ rule, the transition probability can
be further turned into an a posteriori probability that an
event is generated by a genuine tag. We denote the transition
probability generated by an event by the random variable
X . The probability that an event is generated by a genuine
product, P (ge), given that the transition probability the event
generated is smaller than x, can be formulated as follows:

P (ge|X < x) =
P (ge,X < x)
P (X < x)

(2)

=
P (ge) · P (X < x|ge)

P (X < x)
(3)

All terms in the last expression can be estimated from data
that contains known counterfeit products.

V. PROBABILISTIC SOLUTION METHOD

In this section, we present our probabilistic solution method
that instantiates the authentication approach outlined above.
The data processing steps of our solution are following:

1) Train the supply chain model with training data,
2) Filter the testing data set to find missing reads,
3) Evaluate Ptr for all events in the filtered data, and
4) Raise an alarm if Ptr is below a threshold.
We formulate the generic transition probability (Equation 1)

into a more useful form. Two attributes are enough to give a
semantically rich presentation of RFID events, namely event



time (t) and the discrete business location (l) [21]. We start
with the first order Markov assumption which says that the
state of the system is fully described by the last event, or:

P (Ei+1|Ei, Ei−1, ..., E1) = P (Ei+1|Ei) (4)

This assumption discards path dependency of business loca-
tions. By assuming that time and location of new events are
mutually independent random variables, and that locations of
new events do not depend on time of the preceding events, we
can express the transition probability as follows:

P (Ei+1|Ei) = P (li+1, ti+1|li, ti) (5)
= P (li+1|li, ti) · P (ti+1|li, ti)
= P (li+1|li) · P (ti+1|li, ti)
= Pi,i+1 · P (∆Ti = ti+1 − ti)

A. Stochastic supply chain model

To evaluate the two terms in the last expression of Equation
5, we model the process how track and trace events are
generated in a supply chain. We model the supply chain as
nodes and lines and build a Stochastic Supply Chain Model
(SSCM) that has N + 1 distinct states, S0, S1, S2, ..., SN . The
relation between states in the model and the observed events
is following: every time a product enters a state in the model,
it generates a track and trace event in the real life. In other
words, a state in the model corresponds to a reader device. The
zero-state, S0, represents the ”state of non-existence” where
all tagged products are before they are created in the real
world, and exceptionally it does not have corresponding events
or business location in the real life. All other states in the
model correspond to discrete business locations of the real-
world supply chain network where tagged products are read.
Parameters of the model define how products move from one
discrete business location to another.

In the common case, after entering a state, the product
stays there during a finite number of steps. This corresponds
to a normal observation event. The time before the product
generates a new event, called the waiting time, is given by
a probability density function (PDF) that is specific to each
state. For state i, 1 ≤ i ≤ N , this PDF is denoted as p(∆Ti).
The actual distribution is not constrained by the model and it
can be e.g. uniform or Gaussian. After time ∆T from entering
a state, the product enters a new state according to the state
transition probabilities. The first event in a product’s trace is
generated when the product leaves the zero-state S0. After that,
the product continues to move in the model through normal
states as described above until it reaches an end-state. There
are no routes that leave an end-state and thus the waiting time
in an end-state can be regarded as infinite.

The state transition probabilities are time independent and
denoted as Pij = P (Si|Sj) ≥ 0, i, j ≥ 0. State transition
probabilities from a state to itself (Pii) are possible and they
correspond the real-life situation where a product’s trace has
two consecutive reads from the same single business location.

Fig. 3. Illustration of our Stochastic Supply Chain Model (SSCM)

Each physical location in the supply chain is represented
in the SSCM by three states corresponding to receiving,
internal, and shipping operations. The SSCM is trained from
RFID traces and therefore only locations where products are
scanned are present in the SSCM. The resulting model is
flexible and intuitive and it has enough degrees of freedom
to capture the essential statistics of how single products flow
in supply chain networks. The SSCM is exemplified in Fig.
3. This imaginary supply chain illustrates different real-world
problems in location-based product authentication: missing
reads at reader in business location S3 (results into a ”ghost
route” P24, cf. subsection V-B), a wholesaler and a retailer
that do not share trace data beyond receiving notifications (S6

and S10, respectively), and reverse logistics (P84).
If the model would use state transition probabilities from

a state to itself to define the time a product stays in a
state instead of the waiting time PDFs, the model would
be a time-independent first-order discrete time Markov chain
(DTMC). However, we have opted for defining the waiting
time distribution because it allows for flexible modeling of
the supply chain’s time dynamics (i.e. in DTMC the waiting
time distribution is fixed while in SSCM it can have any form).

B. Filtering traces to detect missing reads

The SSCM can be used to detect missing reads (cf. Section
III) in RFID traces. Missing reads can trigger unwanted false
alarms in the clone detection system. Reader devices that have
a below 100% read rate create ”ghost routes” that are observed
as small transition probabilities that do not correspond to real-
world transitions (cf. Fig. 4). Our filtering algorithm tries to
detect when a product is moving along such a ”ghost route”
as evidence of a missing read event.

We explain how the filtering detects missing read events
by referring to the example in Fig. 4. When a transition
probability is low (from A to C), the filtering algorithm can
search for a more probable alternative route that is obtained
by including a new read event between the existing events. If
the probability of the new route (from A to B to C) is higher
than a threshold, the new event (in B) is added to the trace.

The number of missing consecutive read events that the
filter can add is called the order of the filter. In this paper
we study 1st and 2nd order filters. Filters of all orders can
be described by three parameters: i) maximum transition



Fig. 4. Though all products flow from A to B to C, the 99% read rate in B
creates a ”ghost route” A to C. The filtering algorithm tries to detect when a
product moves along the ”ghost route” to add the missing read event in B.

probability (threshold) between the existing events, ii) min-
imum time difference (threshold) between the existing events,
and iii) minimum geometric mean (threshold) of transition
probabilities of the new route. The first two parameters define
when the filter is allowed to add missing reads between
existing events and the third parameter limits the addition of
new routes that are too unlikely. The values of these parameters
can be defined empirically.

C. Location-based authentication

For Ei, i > 1, SSCM enables evaluation of a location
transition probability (Pi−1,i) and a time transition probability
(P (∆Ti−1 = ti−ti−1)). We denote these methods as SSCML

and SSCMT , respectively, and we compare their performance
in a simulation study. For the first event in a trace, E1,
only the location transition probability is defined. Now the
authentication rule from Equation 1 can be rewritten in two
new ways. Event Ei is generated by a genuine product if :

SSCML: Pi−1,i > ε (6)
SSCMT : P (∆Ti−1 = ti − ti−1) > ε (7)

The value of the threshold ε defines the trade-off between
the ratio of event of cloned tags that are detected (hit rate) and
the ratio of events of genuine products classified as generated
by cloned tags (false alarm rate). The value of ε can be
optimized only by setting a cost for false alarms and a value for
hits. In practice, minimization of false alarms might be wanted
and hence ε can be set to the smallest transition probability
of genuine products within the training data. In general, the
threshold ε has different values in Equations 6 and 7.

We believe that an optimal location-based authentication
system should somehow combine the location and time tran-
sition probabilities presented in Equations 6 and 7. Finding an
suitable way to combine these probabilities is, however, out
of the scope of this paper.

VI. SIMULATION STUDY

We evaluate the proposed methods with a simulation study
of a real-world pharmaceutical supply chain. The goal of this
study is to evaluate how cloned tags that can be distinguished
from the corresponding genuine tags in the presence of missing
reads and a limited amount of training data. Cloned tags
that appear before the corresponding genuine products are
manufactured or after they are consumed are not considered
because they can be detected with simple rules.

We measure the hit rate, i.e. how often events created
by cloned tags are detected (system raises an alarm), versus
the false alarm rate, i.e. how often alarms are triggered by
events of genuine tags. The resulting trade-off is presented
as a Receiver Operating Characteristics (ROC) curve that
characterizes the selectivity of a classifier. In a real-world anti-
counterfeiting application, only very small false alarm rates
can be tolerated because the number of read events that the
genuine products generate is very high.

Only the first events generated by the cloned tags are
considered in the results. The reason is that the simulated
supply chain handles both counterfeit and genuine products
in an identical way, so the further events generated by cloned
tags have identical statistics than events of genuine products.
Thus the results indicate how reliably the cloned tags can be
detected as soon as they enter the supply chain. In addition,
those events of genuine products that are directly preceded by
events from cloned tags are neglected from the results.

Fig. 5. The simulated real-world supply chain (R denotes a reader device)

A. Simulated real-world pharmaceutical supply chain

The real-world pharmaceutical supply chain under study
involves nine different organizations in the UK and Holland,
including three manufacturers, a contract packer, distributors,
a pre-wholesaler, and a wholesaler that supplies a hospital
pharmacy in a major London hospital [23]. The products that
flow through this supply chain are equipped with printed Data
Matrix codes that store serialized ID numbers. Single packs are
aggregated into cases and pallets that have both RFID tags and
Data Matrix codes. The pallets are scanned in 20 read stations
in different supply chain locations to generate track and trace
events. The average lead time from production to hospital is
about 40 days, varying between approximately one week and
two months. The supply chain is illustrated in Fig. 5.

In the studied supply chain, traces of products begin either at
the manufacturer’s production line or at the contract packer’s
packaging line. Products are shipped to the wholesaler in
pallets and the wholesaler uses a ”pick, scan, and drop
process” to fill boxes that fulfill the pharmacy’s orders. The
wholesaler delivers products to the hospital pharmacy 2-6
times a day according to orders. The last event in a product’s
trace occurs when it is scanned in to the hospital pharmacy’s
inventory, after which the products are identified based on the
non-serialized EAN-13 bar codes.



We have built a model of the described supply chain in our
own supply chain simulator. The simulator works with three-
hour-long discrete time steps. The model is built based on
documentation [23] and interviews and it has been validated
with direct feedback and example track and trace data. In the
simulator, each supply chain node is presented by three dif-
ferent locations corresponding to business steps of receiving,
internal processes, and shipping. The time how long an object
spends in these locations is given by a uniform distribution. If
the product enters a location where there is a reader device,
and no read error occurs, a track and trace event is generated.
The transitions between the supply chain nodes are determined
by transition probabilities. The transition times between the
nodes are deterministic and estimated from the distances and
transport methods (ship or truck).

The times that logistic units spend in different locations
could not be accurate modeled since the real lead time dis-
tributions were not precisely known. However, more accurate
modeling of the real-world lead times is not likely to affect
the results. In addition, because we evaluate the transition
probabilities without taking into account correlations among
different products’ traces, the simulator treats all logistic units
as independent from each other, which means that for example
aggregation events are not modeled.

B. Set-up

One simulator run generates and analyzes one example set
of RFID traces. In each run, all three manufacturers produce
500 tagged products per day during days 1 to 7. This creates
10,500 genuine products and more than 130,000 possible
read events. During days 8 to 35, 8 counterfeit products
are injected into randomly chosen non-manufacturer supply
chain locations per day, constituting a total of 224 counterfeit
products (resulting into a 2% counterfeit market share, a
high but possible value for seriously infiltrated markets). The
counterfeit products have ID numbers of randomly chosen
genuine products so the events they generate appear in traces
of 224 different genuine products. The simulation stops after
60 days. In some rare cases a counterfeit and a genuine product
with the same ID are both scanned during the same time step.
These cases are not considered in the results.

The results are calculated from the average ROC curves of
10 Monte Carlo iterations (i.e. simulator runs). Each iteration
yields a number of discrete points in the ROC curve and a
continuous curve is drawn by interpolating. The SSCM is
trained in each iteration from the training data set and the
waiting time distributions in the SSCM are uniform distribu-
tions between the smallest and biggest observed waiting times
in that business location. The following tests are performed:
• Test 1: The performance of filtering algorithm in finding

missing reads from trace data without cloned products
with read rates 99.9%, 99.0%, 95%, and 90%, with
training data size of 1000 traces.

• Test 2: The performance of SSCML and SSCMT with
read rates 99.9%, 99.0%, 95%, and 90%, with training
data size of 300 traces.

• Test 3: The performance of SSCML with with training
data size 1000, 300, 100, and 50 traces, and read rates
99.9% and 99%.

• Test 4: The performance of filtering and SSCML with
99% read rate and with training data size of 300 traces.

C. Results

Results of Test 1 show that our filtering algorithm (subsec-
tion V-B) is able to detect up to 86% of missing read events,
depending on the read rate and the filter order (cf. Table I).
In practice it means, for example, that effective read rate can
be increased from 99.0% to 99.84%. Second order filter is
able to detect more missing reads than the first order filter
when the read rate decreases because of the greater number of
consecutive read errors. Moreover, the filter parameters were
defined empirically, which leaves room for optimization.

Results of Test 2 show that that the location-based SSCML

is much more reliable in detecting cloned tags than the time-
based SSCMT (Fig. 6). Overall, SSCML provides reliable
detection results, though the hit rates at the zero false alarm
rate are less than 30%. Analysis of false alarms of SSCML

reveals that in cases when the cloned tag is injected into the
location where the genuine product is expected, the cloned tag
was not detected (miss) and the genuine product generated a
false alarm. The tested SSCMT method is very prone to false
alarms and thus it is not suitable in the studied clone detection
application, but the form of the ROC curve confirms that
also the transition times carry information that distinguishes
events generated by cloned tags from normal events. The
results of Test 2 also confirm that missing reads decrease the
performance of the studied clone detection methods.

Results from Test 3 show that increasing the amount of
training data improves the reliability of SSCML in the pres-
ence of missing reads (Fig. 7). When the number of missing
reads is small, a small amount of training data is enough for
accurate modeling of the underlying supply chain. When the
number of missing reads increases, more and more ”ghost
routes” (cf. Fig. 4) appear and more training data is needed
to capture them. This indicates that precise modeling of the
supply chain contributes to reliable detection of cloned tags.

Results from Test 4 show that our filtering algorithm de-
creases the number of false alarms caused by missing reads,
increasing the hit rate at zero false alarm rate from zero to
ca. 80% (Fig. 8). Analysis of misses reveals that in some
rare cases the filter adds an event before the first event of
a cloned tag, causing the miss. However, the overall effect of
filtering is clearly positive. The posterior distribution in Fig. 8

TABLE I
NUMBER OF MISSED READ EVENTS WITH DIFFERENT FILTERS

Read rate No filter 1. Order 2. Order

99.9% 160 (100%) 23 (14%) 23 (14%)
99.0% 1392 (100%) 246 (18%) 228 (16%)
95.0% 6875 (100%) 1541 (22%) 1207 (18%)
90.0% 13920 (100%) 4262 (30%) 2821 (20%)



Fig. 6. Results of Test 2: ROC curves for SSCML (left) and for SSCMT (right) based clone detection. The curves show that SSCML is much more
reliable than SSCMT in detecting cloned tags, and that missing reads decrease the performance of both these methods. (note the different scales in x-axis)

Fig. 7. Results of Test 3: ROC curves for SSCML with 99.9% (left) and 99% (right) read rates. The curves show that increasing the amount of training
data (more accurate modeling of the supply chain) is important for reliable detection of cloned tags as the number of missing reads increases.

Fig. 8. Results of Test 4: ROC curves (left) and posterior distributions (right) of non-filtered and filtered traces for SSCML with 99% read rate. The curves
show that our filtering algorithm that detects missing reads can provide a dramatic increase to the hit rate with small false alarm rates.

proofs this by showing that the filtering algorithm increases the
probability that an alarm is generated by a counterfeit product
by about 50% in small false alarm rates.

VII. DISCUSSION

Compared to other published results, the achieved above-
95% hit rates at below-0.2% false alarm rates (cf. Fig. 6)
indicate reliable detection of cloned tags. In a somewhat
similar study, a 47% hit rate at a 1% false alarm rate was
achieved by simpler supply chain modeling [20]. In an RFID-
based access control system, cloned tags were detected with
hit rates of 76%-46% at false alarm rates of 8.4%-2.5% [1].

The results of our simulation study confirm that the majority
of cloned tags appear as abnormal events in RFID traces
as soon as the tags enter the supply chain. This means
that anomaly-based intrusion detection system techniques that
are widely used to secure IT systems can be applied to
detecting counterfeit products from track and trace data. Also
missing reads that are common in today’s RFID systems cause
abnormal events and thus create false alarms, but they can be
mitigated by our filtering algorithm that is able to detect up to
84% of missing reads. Moreover, our study shows that accurate
modeling of the underlying supply chain contributes to reliable
detection of cloned tags. The time transition probabilities did



not perform well in clone detection, but we still believe that
event times include information that an optimal location-based
authentication system should make use of.

The training data set needs to have an adequate quality by
including all allowed transitions and no cloned tags. Instead of
training the SSCM, a supply chain manager could alternatively
set up the SSCM manually by selecting all allowed transitions
and estimating the time distributions.

The concept of location-based authentication is not without
limitations. If two products with the same ID are in the
same location, a location-based authentication system cannot
conclude which product is the genuine one. In addition,
the system can generate false alarms that end-users need to
deal with. Despite these shortcomings, the presented method
presents a major complication to counterfeiters who want to
inject counterfeit products into a licit supply chain. Most
importantly, this countermeasure is based on processing of
track and trace data, which does not increase the tag price
and the tag reading time.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present probabilistic techniques to detect
cloned tags from RFID traces. The presented techniques enable
detection of counterfeit products in supply chains where single
products are traced. The results of our simulation study of a
real-world pharmaceutical supply chain confirm that only in
very exceptional cases cloned tags do not create unexpected
events that can be detected. This finding implies that detection-
based security measures have a very big potential to reliably
detect cloned tags in well predictable processes, for example
in a supply chain. Furthermore, we present a high-level event
filtering technique to detect missing reads that constitute the
biggest cause of false alarms in our clone detection application.
Overall, the presented methods provide a considerable level of
protection against serialized counterfeit products that enter a
supply chain, without the need for cryptographic tags.

Future work towards an optimal track and trace based
authentication system will investigate ways to combine the
location transition probabilities with event times that carry
complementary information. In addition, reliability of the
system can potentially be further enhanced by taking into
account correlations between different products’ traces as
well as information in related IT systems, such as advanced
shipping notices.
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